Suppr超能文献

癌症生物标志物组合的蛋白质组学方法

Proteomic Approaches for Biomarker Panels in Cancer.

作者信息

Tanase Cristiana, Albulescu Radu, Neagu Monica

机构信息

a Victor Babes National Institute of Pathology , Bucharest , Romania.

b Faculty of Medicine , Titu Maiorescu University , Bucharest , Romania.

出版信息

J Immunoassay Immunochem. 2016;37(1):1-15. doi: 10.1080/15321819.2015.1116009.

Abstract

Proteomic technologies remain the main backbone of biomarkers discovery in cancer. The continuous development of proteomic technologies also enlarges the bioinformatics domain, thus founding the main pillars of cancer therapy. The main source for diagnostic/prognostic/therapy monitoring biomarker panels are molecules that have a dual role, being both indicators of disease development and therapy targets. Proteomic technologies, such as mass-spectrometry approaches and protein array technologies, represent the main technologies that can depict these biomarkers. Herein, we will illustrate some of the most recent strategies for biomarker discovery in cancer, including the development of immune-markers and the use of cancer stem cells as target therapy. The challenges of proteomic biomarker discovery need new forms of cross-disciplinary conglomerates that will result in increased and tailored access to treatments for patients; diagnostic companies would benefit from the enhanced co-development of companion diagnostics and pharmaceutical companies. In the technology optimization in biomarkers, immune assays are the leaders of discovery machinery.

摘要

蛋白质组学技术仍然是癌症生物标志物发现的主要支柱。蛋白质组学技术的不断发展也扩大了生物信息学领域,从而奠定了癌症治疗的主要支柱。用于诊断/预后/治疗监测生物标志物组的主要来源是具有双重作用的分子,它们既是疾病发展的指标,也是治疗靶点。蛋白质组学技术,如质谱方法和蛋白质阵列技术,是能够描绘这些生物标志物的主要技术。在此,我们将阐述癌症生物标志物发现的一些最新策略,包括免疫标志物的开发以及将癌症干细胞用作靶向治疗。蛋白质组学生物标志物发现面临的挑战需要新形式的跨学科联合,这将为患者带来更多且量身定制的治疗途径;诊断公司将受益于伴随诊断与制药公司加强的联合开发。在生物标志物的技术优化方面,免疫测定是发现机制的引领者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验