Boussouf K, Khairat T, Prakash M, Komiha N, Chambaud G, Hochlaf M
LS3ME-Equipe de Chimie Théorique et Modélisation, Faculté des Sciences Rabat, Université Mohamed V , Rabat, Morocco.
Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est , 5 bd Descartes, 77454 Marne-la-Vallée, France.
J Phys Chem A. 2015 Dec 10;119(49):11928-40. doi: 10.1021/acs.jpca.5b09500. Epub 2015 Nov 24.
Using density functional theory (DFT) with dispersion correction and ab initio post Hartree-Fock methods, we treat the bonding, the structure, the stability, and the spectroscopy of the complexes between Zn(q+) and imidazole (Im), Zn(q+)Imn (where q = 0, 1 and 2; n = 1-4). These entities are subunits of zeolitic imidazolate frameworks (ZIFs) and Zn-enzymes, which possess relevant roles in industrial and biological domains, respectively. We also investigate the Imn (n = 2-4) clusters for comparison. For each species, we determine several new structures that were not found previously. Our calculations show a competition between atomic metal solvation, by either σ-type interactions or π-stacking type interaction, and proton transfer through hydrogen bonding (H-bonding) in charged species. This results in several geometrical environments around the metal. These are connected with structural properties and the functional role of Zn cation within ZIFs and Zn-enzymes. Moreover, we show that the Zn(2+)Imn subunits do not absorb in the visible domain, which may be related to the photostability of ZIFs. Our findings are important for the development of new applications of ZIFs and metalloenzymes.
利用含色散校正的密度泛函理论(DFT)和从头算后哈特里 - 福克方法,我们研究了Zn(q+)与咪唑(Im)形成的配合物Zn(q+)Imn(其中q = 0、1和2;n = 1 - 4)的键合、结构、稳定性和光谱性质。这些实体分别是沸石咪唑酯骨架(ZIFs)和锌酶的亚基,它们在工业和生物领域中具有重要作用。我们还研究了Imn(n = 2 - 4)团簇以作比较。对于每个物种,我们确定了几个以前未发现的新结构。我们的计算表明,在带电物种中,通过σ型相互作用或π堆积型相互作用的原子金属溶剂化与通过氢键(H键)的质子转移之间存在竞争。这导致了金属周围的几种几何环境。这些与ZIFs和锌酶中Zn阳离子的结构性质和功能作用有关。此外,我们表明Zn(2+)Imn亚基在可见光区域不吸收,这可能与ZIFs的光稳定性有关。我们的发现对于ZIFs和金属酶新应用的开发具有重要意义。