Zeglinski Matthew R, Roche Patricia, Hnatowich Mark, Jassal Davinder S, Wigle Jeffrey T, Czubryt Michael P, Dixon Ian M C
Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada;
Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
Am J Physiol Heart Circ Physiol. 2016 Jan 15;310(2):H239-49. doi: 10.1152/ajpheart.00584.2015. Epub 2015 Nov 13.
In cardiac wound healing following myocardial infarction (MI), relatively inactive resident cardiac fibroblasts phenoconvert to hypersynthetic/secretory myofibroblasts that produce large quantities of extracellular matrix (ECM) and fibrillar collagen proteins. Our laboratory and others have identified TGFβ1 as being a persistent stimulus in the chronic and inappropriate wound healing phase that is marked by hypertrophic scarring and eventual stiffening of the entire myocardium, ultimately leading to the pathogenesis of heart failure following MI. Ski is a potent negative regulator of TGFβ/Smad signaling with known antifibrotic effects. Conversely, Scleraxis is a potent profibrotic basic helix-loop-helix transcription factor that stimulates fibrillar collagen expression. We hypothesize that TGFβ1 induces Scleraxis expression by a novel Smad-independent pathway. Our data support the hypothesis that Scleraxis expression is induced by TGFβ1 through a Smad-independent pathway in the cardiac myofibroblast. Specifically, we demonstrate that TGFβ1 stimulates p42/44 (Erk1/2) kinases, which leads to increased Scleraxis expression. Inhibition of MEK1/2 using U0126 led to a sequential temporal reduction of phospho-p42/44 and subsequent Scleraxis expression. We also found that adenoviral Ski expression in primary myofibroblasts caused a significant repression of endogenous Scleraxis expression at both the mRNA and protein levels. Thus we have identified a novel TGFβ1-driven, Smad-independent, signaling cascade that may play an important role in regulating the fibrotic response in activated cardiac myofibroblasts following cardiac injury.
在心肌梗死(MI)后的心脏伤口愈合过程中,相对不活跃的驻留心脏成纤维细胞会发生表型转化,成为高合成/高分泌的肌成纤维细胞,后者会产生大量细胞外基质(ECM)和纤维状胶原蛋白。我们实验室及其他研究团队已确定转化生长因子β1(TGFβ1)是慢性且不适当伤口愈合阶段的持续刺激因素,该阶段的特征为肥厚性瘢痕形成以及整个心肌最终变硬,最终导致MI后心力衰竭的发病机制。Ski是TGFβ/Smad信号通路的有效负调节因子,具有已知的抗纤维化作用。相反,硬骨素是一种有效的促纤维化碱性螺旋-环-螺旋转录因子,可刺激纤维状胶原蛋白的表达。我们假设TGFβ1通过一种新的不依赖Smad的途径诱导硬骨素表达。我们的数据支持这样的假设,即硬骨素表达是由TGFβ1通过心脏肌成纤维细胞中不依赖Smad的途径诱导产生的。具体而言,我们证明TGFβ1刺激p42/44(Erk1/2)激酶,从而导致硬骨素表达增加。使用U0126抑制MEK1/2会导致磷酸化p42/44以及随后的硬骨素表达依次出现时间上的减少。我们还发现,在原代肌成纤维细胞中腺病毒介导的Ski表达在mRNA和蛋白质水平上均导致内源性硬骨素表达的显著抑制。因此,我们确定了一种新的由TGFβ1驱动、不依赖Smad的信号级联反应,其可能在调节心脏损伤后活化的心脏肌成纤维细胞的纤维化反应中发挥重要作用。