Suppr超能文献

从 QTL 到品种——通过多机构网络利用印度巨型水稻品种对干旱、洪水和耐盐性的 QTL 优势。

From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network.

机构信息

National Research Centre on Plant Biotechnology, New Delhi, India.

Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhatisgarh, India.

出版信息

Plant Sci. 2016 Jan;242:278-287. doi: 10.1016/j.plantsci.2015.08.008. Epub 2015 Aug 20.

Abstract

Rice is a staple cereal of India cultivated in about 43.5Mha area but with relatively low average productivity. Abiotic factors like drought, flood and salinity affect rice production adversely in more than 50% of this area. Breeding rice varieties with inbuilt tolerance to these stresses offers an economically viable and sustainable option to improve rice productivity. Availability of high quality reference genome sequence of rice, knowledge of exact position of genes/QTLs governing tolerance to abiotic stresses and availability of DNA markers linked to these traits has opened up opportunities for breeders to transfer the favorable alleles into widely grown rice varieties through marker-assisted backcross breeding (MABB). A large multi-institutional project, "From QTL to variety: marker-assisted breeding of abiotic stress tolerant rice varieties with major QTLs for drought, submergence and salt tolerance" was initiated in 2010 with funding support from Department of Biotechnology, Government of India, in collaboration with International Rice Research Institute, Philippines. The main focus of this project is to improve rice productivity in the fragile ecosystems of eastern, northeastern and southern part of the country, which bear the brunt of one or the other abiotic stresses frequently. Seven consistent QTLs for grain yield under drought, namely, qDTY1.1, qDTY2.1, qDTY2.2, qDTY3.1, qDTY3.2, qDTY9.1 and qDTY12.1 are being transferred into submergence tolerant versions of three high yielding mega rice varieties, Swarna-Sub1, Samba Mahsuri-Sub1 and IR 64-Sub1. To address the problem of complete submergence due to flash floods in the major river basins, the Sub1 gene is being transferred into ten highly popular locally adapted rice varieties namely, ADT 39, ADT 46, Bahadur, HUR 105, MTU 1075, Pooja, Pratikshya, Rajendra Mahsuri, Ranjit, and Sarjoo 52. Further, to address the problem of soil salinity, Saltol, a major QTL for salt tolerance is being transferred into seven popular locally adapted rice varieties, namely, ADT 45, CR 1009, Gayatri, MTU 1010, PR 114, Pusa 44 and Sarjoo 52. Genotypic background selection is being done after BC2F2 stage using an in-house designed 50K SNP chip on a set of twenty lines for each combination, identified with phenotypic similarity in the field to the recipient parent. Near-isogenic lines with more than 90% similarity to the recipient parent are now in advanced generation field trials. These climate smart varieties are expected to improve rice productivity in the adverse ecologies and contribute to the farmer's livelihood.

摘要

水稻是印度的主要粮食作物,种植面积约为 4350 万公顷,但平均单产相对较低。干旱、洪水和盐度等非生物因素在该地区超过 50%的地区对水稻生产产生了不利影响。培育具有内在耐受这些胁迫的水稻品种是提高水稻生产力的一种经济可行和可持续的选择。水稻具有高质量的参考基因组序列,并且基因/QTL 对非生物胁迫的耐受性的精确位置以及与这些性状相关的 DNA 标记的可用性,为育种者提供了机会,可以通过标记辅助回交育种(MABB)将有利等位基因转移到广泛种植的水稻品种中。一个大型的多机构项目,“从 QTL 到品种:具有主要耐旱、耐淹和耐盐性 QTL 的非生物胁迫耐受水稻品种的标记辅助育种”于 2010 年由印度生物技术部资助启动,与国际水稻研究所合作,菲律宾。该项目的主要重点是提高该国东部、东北部和南部脆弱生态系统的水稻生产力,这些地区经常受到一种或另一种非生物胁迫的冲击。七个一致的耐旱性粒产量 QTL,即 qDTY1.1、qDTY2.1、qDTY2.2、qDTY3.1、qDTY3.2、qDTY9.1 和 qDTY12.1,正在被转移到三个高产巨型水稻品种 Swarna-Sub1、Samba Mahsuri-Sub1 和 IR 64-Sub1 的耐淹版本中。为了解决主要河流流域因洪水泛滥而导致的完全淹没的问题,Sub1 基因正在被转移到十个高度适应的本地水稻品种中,即 ADT 39、ADT 46、Bahadur、HUR 105、MTU 1075、Pooja、Pratikshya、Rajendra Mahsuri、Ranjit 和 Sarjoo 52。此外,为了解决土壤盐度问题,正在将主要耐盐性 QTL Saltol 转移到七个流行的本地适应水稻品种中,即 ADT 45、CR 1009、Gayatri、MTU 1010、PR 114、Pusa 44 和 Sarjoo 52。在 BC2F2 阶段之后,使用内部设计的 50K SNP 芯片对每个组合的二十个系进行基因型背景选择,这些系在田间与受体亲本具有表型相似性。现在,与受体亲本相似度超过 90%的近等基因系正在进行高级田间试验。这些适应气候变化的品种有望提高不利生态系统中的水稻生产力,并有助于农民的生计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验