Clark Michelle M, Blangero John, Dyer Thomas D, Sobel Eric M, Sinsheimer Janet S
Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA.
South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas, Rio Grande Valley, Brownsville, TX, USA.
Ann Hum Genet. 2016 Jan;80(1):63-80. doi: 10.1111/ahg.12137. Epub 2015 Nov 15.
Maternal-offspring gene interactions, aka maternal-fetal genotype (MFG) incompatibilities, are neglected in complex diseases and quantitative trait studies. They are implicated in birth to adult onset diseases but there are limited ways to investigate their influence on quantitative traits. We present the quantitative-MFG (QMFG) test, a linear mixed model where maternal and offspring genotypes are fixed effects and residual correlations between family members are random effects. The QMFG handles families of any size, common or general scenarios of MFG incompatibility, and additional covariates. We develop likelihood ratio tests (LRTs) and rapid score tests and show they provide correct inference. In addition, the LRT's alternative model provides unbiased parameter estimates. We show that testing the association of SNPs by fitting a standard model, which only considers the offspring genotypes, has very low power or can lead to incorrect conclusions. We also show that offspring genetic effects are missed if the MFG modeling assumptions are too restrictive. With genome-wide association study data from the San Antonio Family Heart Study, we demonstrate that the QMFG score test is an effective and rapid screening tool. The QMFG test therefore has important potential to identify pathways of complex diseases for which the genetic etiology remains to be discovered.
母-子基因相互作用,即母-胎基因型(MFG)不相容性,在复杂疾病和数量性状研究中常被忽视。它们与从出生到成年期发病的疾病有关,但研究它们对数量性状影响的方法有限。我们提出了定量MFG(QMFG)检验,这是一种线性混合模型,其中母本和子代基因型为固定效应,家庭成员之间的残差相关性为随机效应。QMFG可处理任何规模的家庭、MFG不相容的常见或一般情况以及其他协变量。我们开发了似然比检验(LRT)和快速得分检验,并证明它们能提供正确的推断。此外,LRT的备择模型可提供无偏参数估计。我们表明,通过拟合仅考虑子代基因型的标准模型来检验单核苷酸多态性(SNP)的关联性,功效非常低或可能导致错误结论。我们还表明,如果MFG建模假设过于严格,会遗漏子代遗传效应。利用圣安东尼奥家族心脏研究的全基因组关联研究数据,我们证明QMFG得分检验是一种有效且快速的筛选工具。因此,QMFG检验在识别遗传病因仍有待发现的复杂疾病途径方面具有重要潜力。