Alaybeyoglu Begum, Sariyar Akbulut Berna, Ozkirimli Elif
a Chemical Engineering Department , Bogazici University , Bebek, 34342 Istanbul , Turkey.
b Bioengineering Department , Marmara University , Kadikoy, 34722 Istanbul , Turkey.
J Biomol Struct Dyn. 2016 Nov;34(11):2387-98. doi: 10.1080/07391102.2015.1117396. Epub 2016 Mar 17.
Discovery of cargo carrying cell-penetrating peptides has opened a new gate in the development of peptide-based drugs that can effectively target intracellular enzymes. Success in application and development of cell-penetrating peptides in drug design depends on understanding their translocation mechanisms. In this study, our aim was to examine the bacterial translocation mechanism of the cell-penetrating pVEC peptide (LLIILRRRIRKQAHAHSK) using steered molecular dynamics (SMD) simulations. The significance of specific residues or regions for translocation was studied by performing SMD simulations on the alanine mutants and other variants of pVEC. Residue-based analysis showed that positively charged residues contribute to adsorption to the lipid bilayer and to electrostatic interactions with the lipid bilayer as peptides are translocated. Translocation takes place in three main stages; the insertion of the N-terminus into the bilayer, the inclusion of the whole peptide inside the membrane and the exit of the N-terminus from the bilayer. These three stages mirror the three regions on pVEC; namely, the hydrophobic N-terminus, the cationic midsection, and the hydrophilic C-terminus. The N-terminal truncated pVEC, I3A, L5A, R7A mutants and scramble-pVEC make weaker interactions with the lipids during translocation highlighting the contribution of the N-terminal residues and the sequence of the structural regions to the translocation mechanism. This study provides atomistic detail about the mechanism of pVEC peptide translocation and can guide future peptide-based drug design efforts.
携带货物的细胞穿透肽的发现为基于肽的药物开发打开了一扇新大门,这类药物能够有效靶向细胞内酶。细胞穿透肽在药物设计中的应用与开发取得成功,取决于对其转运机制的理解。在本研究中,我们的目的是使用引导分子动力学(SMD)模拟来研究细胞穿透肽pVEC(LLIILRRRIRKQAHAHSK)的细菌转运机制。通过对pVEC的丙氨酸突变体和其他变体进行SMD模拟,研究了特定残基或区域对转运的重要性。基于残基的分析表明,带正电荷的残基有助于肽转运时吸附到脂质双层并与脂质双层发生静电相互作用。转运发生在三个主要阶段:N端插入双层膜、整个肽进入膜内以及N端从双层膜中退出。这三个阶段反映了pVEC上的三个区域,即疏水的N端、阳离子中间部分和亲水的C端。N端截短的pVEC、I3A、L5A、R7A突变体和乱序pVEC在转运过程中与脂质的相互作用较弱,突出了N端残基和结构区域序列对转运机制的贡献。本研究提供了关于pVEC肽转运机制的原子细节,并可指导未来基于肽的药物设计工作。