Suppr超能文献

大型强子对撞机准直器环境下无铁芯感应式位置传感器的性能分析

Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment.

作者信息

Danisi Alessandro, Masi Alessandro, Losito Roberto

机构信息

CERN-European Organization for Nuclear Research, Route de Meyrin, Geneva CH-1211, Switzerland.

出版信息

Sensors (Basel). 2015 Nov 11;15(11):28592-602. doi: 10.3390/s151128592.

Abstract

The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs.

摘要

无铁芯感应式位置传感器(I2PS)已被引入,作为存在外部磁场时线性可变差动变压器(LVDT)的有效替代方案。这种线性位置传感器的潜在应用可在核电站、托卡马克装置、卫星和粒子加速器等关键系统中找到。本文分析了I2PS在大型强子对撞机(LHC)准直器的恶劣环境中的性能,在这种环境下,存在核辐射和外部磁场时要求位置不确定度小于20微米。I2PS已被选定用于LHC第二轮运行的安装,以解决标准LVDT所面临的磁干扰问题。本文详细描述了属于新I2PS测量任务的系统链、它们对传感器性能的影响以及可能的进一步优化。通过评估位置不确定度(30秒内)、抗磁性和长期稳定性(7天内)来分析I2PS的性能。这三个指标是根据2015年LHC运行期间采集的数据进行评估的,并与LVDT的指标进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/369a/4701298/03d2098fba4f/sensors-15-28592-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验