Suppr超能文献

HAGR-D:一种利用深度图进行手势识别的新方法。

HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps.

作者信息

Santos Diego G, Fernandes Bruno J T, Bezerra Byron L D

机构信息

Escola Politécnica de Pernambuco, Universidade de Pernambuco, R. Benfica, 455-Madalena, Recife-PE 50720-001, Brazil.

出版信息

Sensors (Basel). 2015 Nov 12;15(11):28646-64. doi: 10.3390/s151128646.

Abstract

The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its complexity, which is due to the large number of small articulations in a hand. This paper proposes a novel approach for hand gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft, Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW) and Hidden Markov models (HMM), called the hybrid approach for gesture recognition with depth maps (HAGR-D). The experiments show that the proposed model overcomes other algorithms presented in the literature in hand gesture recognition tasks, achieving a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset.

摘要

手是身体的重要组成部分,可通过手势来表达信息,其动作可用于基于计算机视觉的动态手势识别系统,并具有实际应用,如医疗、游戏和手语等领域。尽管深度传感器在手势识别方面取得了巨大进展,但由于手部存在大量小关节,手势识别因其复杂性仍然是一个悬而未决的问题。本文提出了一种新颖的手势识别方法,该方法使用由微软Kinect传感器(美国华盛顿州雷德蒙德市微软公司)生成的深度图,采用CIPBR(基于RANSAC的凸不变位置)算法的变体以及由动态时间规整(DTW)和隐马尔可夫模型(HMM)组成的混合分类器,即深度图手势识别混合方法(HAGR-D)。实验表明,所提出的模型在手势识别任务中克服了文献中提出的其他算法,在MSRGesture3D数据集中实现了97.49%的分类率,在RPPDI动态手势数据集中实现了98.43%的分类率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f172/4701301/0f969637809a/sensors-15-28646-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验