Yang Hee-Deok
Department of Computer Engineering, Chosun University, Seosuk-dong, Dong-ku, Gwangju 501-759, Korea.
Sensors (Basel). 2014 Dec 24;15(1):135-47. doi: 10.3390/s150100135.
Sign language is a visual language used by deaf people. One difficulty of sign language recognition is that sign instances of vary in both motion and shape in three-dimensional (3D) space. In this research, we use 3D depth information from hand motions, generated from Microsoft's Kinect sensor and apply a hierarchical conditional random field (CRF) that recognizes hand signs from the hand motions. The proposed method uses a hierarchical CRF to detect candidate segments of signs using hand motions, and then a BoostMap embedding method to verify the hand shapes of the segmented signs. Experiments demonstrated that the proposed method could recognize signs from signed sentence data at a rate of 90.4%.
手语是聋人使用的一种视觉语言。手语识别的一个难点在于,手语实例在三维(3D)空间中的动作和形状都存在变化。在本研究中,我们使用微软Kinect传感器生成的手部动作的3D深度信息,并应用一种分层条件随机场(CRF),从手部动作中识别手语。所提出的方法使用分层CRF,通过手部动作检测手语的候选片段,然后使用BoostMap嵌入方法验证分割出手语的手部形状。实验表明,所提出的方法能够以90.4%的准确率从手语句子数据中识别手语。