Suppr超能文献

基于条件随机场的Kinect传感器手语识别

Sign language recognition with the Kinect sensor based on conditional random fields.

作者信息

Yang Hee-Deok

机构信息

Department of Computer Engineering, Chosun University, Seosuk-dong, Dong-ku, Gwangju 501-759, Korea.

出版信息

Sensors (Basel). 2014 Dec 24;15(1):135-47. doi: 10.3390/s150100135.

Abstract

Sign language is a visual language used by deaf people. One difficulty of sign language recognition is that sign instances of vary in both motion and shape in three-dimensional (3D) space. In this research, we use 3D depth information from hand motions, generated from Microsoft's Kinect sensor and apply a hierarchical conditional random field (CRF) that recognizes hand signs from the hand motions. The proposed method uses a hierarchical CRF to detect candidate segments of signs using hand motions, and then a BoostMap embedding method to verify the hand shapes of the segmented signs. Experiments demonstrated that the proposed method could recognize signs from signed sentence data at a rate of 90.4%.

摘要

手语是聋人使用的一种视觉语言。手语识别的一个难点在于,手语实例在三维(3D)空间中的动作和形状都存在变化。在本研究中,我们使用微软Kinect传感器生成的手部动作的3D深度信息,并应用一种分层条件随机场(CRF),从手部动作中识别手语。所提出的方法使用分层CRF,通过手部动作检测手语的候选片段,然后使用BoostMap嵌入方法验证分割出手语的手部形状。实验表明,所提出的方法能够以90.4%的准确率从手语句子数据中识别手语。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/006c/4327011/d3509af4874f/sensors-15-00135f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验