Suppr超能文献

有机金属单分子结中电荷态交替引起的场致电导开关。

Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions.

机构信息

IBM Research - Zurich, Säumerstrasse 4, Rüschlikon 8803, Switzerland.

Department of Physical Chemistry, University of Vienna, Sensengasse 8/7, Vienna 1090, Austria.

出版信息

Nat Nanotechnol. 2016 Feb;11(2):170-6. doi: 10.1038/nnano.2015.255. Epub 2015 Nov 16.

Abstract

Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios.

摘要

通过单分子的电荷传输可以受到位于传输路径中的氧化还原活性金属中心的电荷和自旋态的影响。这些固有性质通常通过改变分子的电化学和磁环境来操纵,这需要具有多个端子的复杂设置。在这里,我们表明,含有 Fe、Ru 或 Mo 中心的有机金属化合物的氧化和还原仅可通过施加到两端子分子结的电场来触发。虽然所有化合物都表现出与偏压相关的滞后现象,但含 Mo 的化合物还表现出突然的电压诱导电导开关,在小于 1.0 V 的偏压下产生超过 1000 的高至低电流比。密度泛函理论计算确定了一个局部的、氧化还原活性的分子轨道,由于 Mo 中心独特的自旋极化基态,该分子轨道与电极弱耦合并且与引线的费米能级紧密对齐。这种情况为传输提供了额外的缓慢且非相干的跳跃通道,导致整个分子发生瞬态充电效应,具有强烈的滞后和大的高至低电流比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验