Suppr超能文献

单分子纳米电化学在电结中的应用。

Single Molecule Nanoelectrochemistry in Electrical Junctions.

机构信息

Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, United Kingdom.

出版信息

Acc Chem Res. 2016 Nov 15;49(11):2640-2648. doi: 10.1021/acs.accounts.6b00373. Epub 2016 Oct 7.

Abstract

It is now possible to reliably measure single molecule conductance in a wide variety of environments including organic liquids, ultrahigh vacuum, water, ionic liquids, and electrolytes. The most commonly used methods deploy scanning probe microscopes, mechanically formed break junctions, or lithographically formed nanogap contacts. Molecules are generally captured between a pair of facing electrodes, and the junction current response is measured as a function of bias voltage. Gating electrodes can also be added so that the electrostatic potential at the molecular bridge can be independently controlled by this third noncontacting electrode. This can also be achieved in an electrolytic environment using a four-electrode bipotentiostatic configuration, which allows independent electrode potential control of the two contacting electrodes. This is commonly realized using an electrochemical STM and enables single molecule electrical characterization as a function of electrode potential and redox state of the molecular bridge. This has emerged as a powerful tool in modern interfacial electrochemistry and nanoelectrochemistry for studying charge transport across single molecules as a function of electrode potential and the electrolytic environments. Such measurements are possible in electrolytes ranging from aqueous buffers to nonaqueous ionic liquids. In this Account, we illustrate a number of examples of single molecule electrical measurements under electrode potential control use a scanning tunneling microscope (STM) and demonstrate how these can help in the understanding of charge transport in single molecule junctions. Examples showing charge transport following phase coherent tunneling to incoherent charge hopping across redox active molecular bridges are shown. In the case of bipyridinium (or viologen) molecular wires, it is shown how electrochemical reduction leads to an increase of the single molecule conductance, which is controlled by the liquid electrochemical gating. This has been referred to as to a "single molecule transistor configuration" with the gate voltage being provided by the controllable potential achieved through the electrochemical double layer. It is shown how the electrolyte medium can control such gating, with ionic liquids providing more efficient gate coupling than aqueous electrolytes. Control of the conductance of viologen molecular wires can also be achieved by encapsulating the viologen redox moiety within a molecular cage, thereby controlling its immediate environment. Molecular conductance can also be gated through multiple redox states. This has been shown for the redox moiety pyrrolo-tetrathiafulvalene, which undergoes single molecule electrochemical transistor gating through three redox states in molecular junctions. Charge transport through this junction follows a two-step hopping mechanism, demonstrating the role of the redox center in electron transfer across the molecular bridge. Recent electrolyte gating studies of rigid, conjugated redox-active metal complexes with tailored terpyridine coordinating ligands and anchors are also presented. These aforementioned studies have all been performed with gold electrode contacts. The Account concludes with recent data showing that it is now possible to study single molecule electrochemical gating with nickel electrodes. This opens up new perspectives for studying interfacial charge transfer with a wide variety of other electrode materials including semiconductor electrodes and also points toward future opportunities for coupling molecular spintronics and nanoelectrochemistry.

摘要

现在可以在各种环境中可靠地测量单分子电导,包括有机液体、超高真空、水、离子液体和电解质。最常用的方法是使用扫描探针显微镜、机械形成的断裂结或光刻形成的纳米间隙接触。分子通常被捕获在一对相对的电极之间,并且作为偏置电压的函数来测量结电流响应。还可以添加门控电极,以便通过第三非接触电极独立控制分子桥的静电势。在具有四电极双恒电位配置的电解环境中也可以实现这一点,该配置允许独立地控制两个接触电极的电极电势。这通常通过电化学 STM 来实现,并能够作为分子桥的电极电势和氧化还原状态的函数进行单分子电学特性。这已成为现代界面电化学和纳米电化学中研究单分子作为电极电势和电解质环境函数的电荷输运的强大工具。这种测量在从水缓冲液到非水离子液体的电解质中都是可能的。在本说明中,我们说明了在电极电势控制下使用扫描隧道显微镜 (STM) 进行单分子电学测量的一些示例,并展示了这些示例如何有助于理解单分子结中的电荷输运。展示了通过相相干隧穿到氧化还原活性分子桥的非相干电荷跳跃进行电荷输运的示例。在联吡啶(或紫罗碱)分子线的情况下,表明电化学还原如何导致单分子电导增加,而单分子电导受通过电化学双层实现的可控电位控制。这被称为“单分子晶体管配置”,其中栅极电压由通过电化学双层实现的可控电位提供。表明电解质介质如何控制这种门控,离子液体比水电解质提供更有效的门控耦合。通过将紫罗碱氧化还原部分封装在分子笼内,还可以控制紫罗碱分子线的电导,从而控制其直接环境。分子电导也可以通过多个氧化还原态进行门控。这已经在吡咯并四噻吩氧化还原部分中得到证明,其在分子结中通过三个氧化还原态进行单分子电化学晶体管门控。通过该结的电荷传输遵循两步跳跃机制,证明了氧化还原中心在分子桥的电子转移中的作用。还介绍了最近关于具有定制的三吡啶配位配体和锚定的刚性共轭氧化还原活性金属配合物的电解质门控研究。上述所有研究均使用金电极进行。该说明以最近的数据结束,这些数据表明现在可以使用镍电极研究单分子电化学门控。这为使用各种其他电极材料(包括半导体电极)研究界面电荷转移开辟了新的前景,并为分子自旋电子学和纳米电化学的未来结合提供了机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验