Adhikari Yuwaraj, Liu Tianhan, Wang Hailong, Hua Zhenqi, Liu Haoyang, Lochner Eric, Schlottmann Pedro, Yan Binghai, Zhao Jianhua, Xiong Peng
Department of Physics, Florida State University, Tallahassee, FL, 32306, USA.
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China.
Nat Commun. 2023 Aug 24;14(1):5163. doi: 10.1038/s41467-023-40884-9.
Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.
一个多世纪以来,手性一直是物理、化学和生物学中至关重要的属性。最近,人们发现电子在穿过手性分子、晶体及其混合物后会发生自旋极化。这种现象被称为手性诱导自旋选择性(CISS),具有广泛的应用潜力和深远的基本意义,涉及结构手性、拓扑态以及电子自旋和轨道之间的复杂相互作用。然而,鉴于有机分子中的自旋轨道耦合(SOC)可忽略不计,手性几何结构如何影响电子自旋的微观图景仍然难以捉摸。在这项工作中,我们通过直接比较基于磁性半导体的手性分子自旋阀与具有不同SOC强度的普通金属电极的磁电导(MC)测量结果来解决这个问题。实验表明,重金属电极提供SOC,将手性分子结构诱导的轨道极化转化为自旋极化。我们的结果说明了SOC在金属电极中对CISS自旋阀效应的关键作用。一个具有势垒磁手性调制的隧穿模型被证明能够定量解释这种异常的输运行为。