Suppr超能文献

通过结合星载ICESat-GLAS波形和多光谱陆地卫星-TM图像估算森林冠层覆盖度

[Estimating forest canopy cover by combining spaceborne ICESat-GLAS waveforms and mul- tispectral Landsat-TM images].

出版信息

Ying Yong Sheng Tai Xue Bao. 2015 Jun;26(6):1657-64.

Abstract

The spatial distribution of forest canopy cover is a critical indicator for evaluating the forest productivity and decomposition rates. With the Wangqing Forest Region in Jilin Province of China as the study area, this study first estimated the forest canopy cover using spaceborne LiDAR IC- ESat-GLAS waveforms and Landsat-TM multispectral images, respectively, and then GLAS data and TM images were combined to further estimate forest canopy cover by using multiple linear regression and BP neural network. The results showed that when the forest canopy cover was estimated with single data source, the determination coefficient of model was 0.762 for GLAS data and 0.598 for TM data. When the forest canopy cover was estimated by combining GLAS data and TM data, the determination coefficient of model was 0.841 for multiple linear regression, and the simulation precision was 0.851 for BP neural network. The study indicated that the combination of ICESat-GLAS data and Landsat-TM images could exploit the advantages of multi-source remote sensing data and improve the estimating accuracy of forest canopy cover, and it was expected to provide a promising way for spatially continuous mapping of forest canopy cover in future.

摘要

森林冠层覆盖度的空间分布是评估森林生产力和分解速率的关键指标。本研究以中国吉林省汪清林区为研究区域,首先分别利用星载激光雷达ICESat-GLAS波形数据和陆地卫星TM多光谱影像估算森林冠层覆盖度,然后将GLAS数据与TM影像相结合,运用多元线性回归和BP神经网络进一步估算森林冠层覆盖度。结果表明,单数据源估算森林冠层覆盖度时,GLAS数据模型的决定系数为0.762,TM数据模型的决定系数为0.598。GLAS数据与TM数据相结合估算森林冠层覆盖度时,多元线性回归模型的决定系数为0.841,BP神经网络的模拟精度为0.851。研究表明,ICESat-GLAS数据与陆地卫星TM影像相结合能够发挥多源遥感数据的优势,提高森林冠层覆盖度的估算精度,有望为未来森林冠层覆盖度的空间连续制图提供一条有效途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验