Suppr超能文献

通过功能相互作用网络揭示基于磷酸化的特异性

Uncovering Phosphorylation-Based Specificities through Functional Interaction Networks.

作者信息

Wagih Omar, Sugiyama Naoyuki, Ishihama Yasushi, Beltrao Pedro

机构信息

From the ‡European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD;

§Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.

出版信息

Mol Cell Proteomics. 2016 Jan;15(1):236-45. doi: 10.1074/mcp.M115.052357. Epub 2015 Nov 16.

Abstract

Protein kinases are an important class of enzymes involved in the phosphorylation of their targets, which regulate key cellular processes and are typically mediated by a specificity for certain residues around the target phospho-acceptor residue. While efforts have been made to identify such specificities, only ∼30% of human kinases have a significant number of known binding sites. We describe a computational method that utilizes functional interaction data and phosphorylation data to predict specificities of kinases. We applied this method to human kinases to predict substrate preferences for 57% of all known kinases and show that we are able to reconstruct well-known specificities. We used an in vitro mass spectrometry approach to validate four understudied kinases and show that predicted models closely resemble true specificities. We show that this method can be applied to different organisms and can be extended to other phospho-recognition domains. Applying this approach to different types of posttranslational modifications (PTMs) and binding domains could uncover specificities of understudied PTM recognition domains and provide significant insight into the mechanisms of signaling networks.

摘要

蛋白激酶是一类重要的酶,参与其靶标的磷酸化过程,这些靶标调节关键的细胞过程,通常由对靶标磷酸受体残基周围某些残基的特异性介导。尽管人们已努力确定此类特异性,但只有约30%的人类激酶具有大量已知的结合位点。我们描述了一种利用功能相互作用数据和磷酸化数据来预测激酶特异性的计算方法。我们将此方法应用于人类激酶,以预测所有已知激酶中57%的底物偏好性,并表明我们能够重建众所周知的特异性。我们使用体外质谱方法验证了四种研究较少的激酶,并表明预测模型与真实特异性非常相似。我们表明,该方法可应用于不同生物体,并可扩展到其他磷酸识别结构域。将此方法应用于不同类型的翻译后修饰(PTM)和结合结构域,可能会揭示研究较少的PTM识别结构域的特异性,并为信号网络机制提供重要见解。

相似文献

1
Uncovering Phosphorylation-Based Specificities through Functional Interaction Networks.
Mol Cell Proteomics. 2016 Jan;15(1):236-45. doi: 10.1074/mcp.M115.052357. Epub 2015 Nov 16.
2
Systematic analysis of protein phosphorylation networks from phosphoproteomic data.
Mol Cell Proteomics. 2012 Oct;11(10):1070-83. doi: 10.1074/mcp.M111.012625. Epub 2012 Jul 13.
3
From Phosphosites to Kinases.
Methods Mol Biol. 2016;1355:307-21. doi: 10.1007/978-1-4939-3049-4_21.
4
Systematic discovery of in vivo phosphorylation networks.
Cell. 2007 Jun 29;129(7):1415-26. doi: 10.1016/j.cell.2007.05.052. Epub 2007 Jun 14.
6
Large-scale identification of phosphorylation sites for profiling protein kinase selectivity.
J Proteome Res. 2014 Jul 3;13(7):3410-9. doi: 10.1021/pr500319y. Epub 2014 Jun 4.
7
Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
Bioinformatics. 2016 Jan 15;32(2):252-9. doi: 10.1093/bioinformatics/btv550. Epub 2015 Sep 22.
10
Bioinformatics Analysis of PTM-Modified Protein Interaction Networks and Complexes.
Methods Mol Biol. 2017;1558:321-332. doi: 10.1007/978-1-4939-6783-4_15.

引用本文的文献

1
Transitions in the proteome and phospho-proteome during Xenopus laevis development.
Dev Biol. 2025 Sep;525:155-171. doi: 10.1016/j.ydbio.2025.05.022. Epub 2025 Jun 2.
2
Searching for Sulfotyrosines (sY) in a HA(pY)STACK.
J Proteome Res. 2025 Mar 7;24(3):1250-1264. doi: 10.1021/acs.jproteome.4c00907. Epub 2025 Feb 5.
3
Phosphorylation in the Proteome: A Meta-Analysis of Publicly Available Data Sets.
J Proteome Res. 2024 Dec 6;23(12):5326-5341. doi: 10.1021/acs.jproteome.4c00418. Epub 2024 Oct 30.
5
Nphos: Database and Predictor of Protein N-phosphorylation.
Genomics Proteomics Bioinformatics. 2024 Sep 13;22(3). doi: 10.1093/gpbjnl/qzae032.
6
PTMoreR-enabled cross-species PTM mapping and comparative phosphoproteomics across mammals.
Cell Rep Methods. 2024 Sep 16;4(9):100859. doi: 10.1016/j.crmeth.2024.100859. Epub 2024 Sep 9.
7
Chilling stress response in tobacco seedlings: insights from transcriptome, proteome, and phosphoproteome analyses.
Front Plant Sci. 2024 May 28;15:1390993. doi: 10.3389/fpls.2024.1390993. eCollection 2024.
8
Meta-Analysis of Rice Phosphoproteomics Data to Understand Variation in Cell Signaling Across the Rice Pan-Genome.
J Proteome Res. 2024 Jul 5;23(7):2518-2531. doi: 10.1021/acs.jproteome.4c00187. Epub 2024 May 29.
9
Interpretable Multi-Scale Deep Learning for RNA Methylation Analysis across Multiple Species.
Int J Mol Sci. 2024 Mar 1;25(5):2869. doi: 10.3390/ijms25052869.

本文引用的文献

1
SR protein kinases promote splicing of nonconsensus introns.
Nat Struct Mol Biol. 2015 Aug;22(8):611-7. doi: 10.1038/nsmb.3057. Epub 2015 Jul 13.
3
Large-scale identification of phosphorylation sites for profiling protein kinase selectivity.
J Proteome Res. 2014 Jul 3;13(7):3410-9. doi: 10.1021/pr500319y. Epub 2014 Jun 4.
4
The mutational landscape of phosphorylation signaling in cancer.
Sci Rep. 2013 Oct 2;3:2651. doi: 10.1038/srep02651.
5
Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation.
Nat Struct Mol Biol. 2013 Sep;20(9):1040-6. doi: 10.1038/nsmb.2642. Epub 2013 Aug 11.
6
STRING v9.1: protein-protein interaction networks, with increased coverage and integration.
Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15. doi: 10.1093/nar/gks1094. Epub 2012 Nov 29.
7
Systematic functional prioritization of protein posttranslational modifications.
Cell. 2012 Jul 20;150(2):413-25. doi: 10.1016/j.cell.2012.05.036.
9
Biological sequence motif discovery using motif-x.
Curr Protoc Bioinformatics. 2011 Sep;Chapter 13:13.15.1-13.15.24. doi: 10.1002/0471250953.bi1315s35.
10
HMMER web server: interactive sequence similarity searching.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37. doi: 10.1093/nar/gkr367. Epub 2011 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验