Suppr超能文献

一种用于检测化学转化模块的新陈代谢网络新表示法。

A new network representation of the metabolism to detect chemical transformation modules.

作者信息

Sorokina Maria, Medigue Claudine, Vallenet David

机构信息

Direction des Sciences du Vivant, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, 2 rue Gaston Crémieux, Evry, 91057, France.

CNRS-UMR8030, 2 rue Gaston Crémieux, Evry, 91057, France.

出版信息

BMC Bioinformatics. 2015 Nov 14;16:385. doi: 10.1186/s12859-015-0809-4.

Abstract

BACKGROUND

Metabolism is generally modeled by directed networks where nodes represent reactions and/or metabolites. In order to explore metabolic pathway conservation and divergence among organisms, previous studies were based on graph alignment to find similar pathways. Few years ago, the concept of chemical transformation modules, also called reaction modules, was introduced and correspond to sequences of chemical transformations which are conserved in metabolism. We propose here a novel graph representation of the metabolic network where reactions sharing a same chemical transformation type are grouped in Reaction Molecular Signatures (RMS).

RESULTS

RMS were automatically computed for all reactions and encode changes in atoms and bonds. A reaction network containing all available metabolic knowledge was then reduced by an aggregation of reaction nodes and edges to obtain a RMS network. Paths in this network were explored and a substantial number of conserved chemical transformation modules was detected. Furthermore, this graph-based formalism allows us to define several path scores reflecting different biological conservation meanings. These scores are significantly higher for paths corresponding to known metabolic pathways and were used conjointly to build association rules that should predict metabolic pathway types like biosynthesis or degradation.

CONCLUSIONS

This representation of metabolism in a RMS network offers new insights to capture relevant metabolic contexts. Furthermore, along with genomic context methods, it should improve the detection of gene clusters corresponding to new metabolic pathways.

摘要

背景

代谢通常由有向网络建模,其中节点代表反应和/或代谢物。为了探索生物体之间的代谢途径保守性和差异性,以往的研究基于图比对来寻找相似的途径。几年前,化学转化模块(也称为反应模块)的概念被引入,它对应于在代谢中保守的化学转化序列。我们在此提出一种代谢网络的新图表示法,其中共享相同化学转化类型的反应被分组到反应分子特征(RMS)中。

结果

为所有反应自动计算RMS,并对原子和键的变化进行编码。然后通过反应节点和边的聚合来简化包含所有可用代谢知识的反应网络,以获得RMS网络。探索了该网络中的路径,并检测到大量保守的化学转化模块。此外,这种基于图的形式主义使我们能够定义几个反映不同生物学保守意义的路径得分。对于与已知代谢途径相对应的路径,这些得分显著更高,并联合用于构建关联规则,以预测生物合成或降解等代谢途径类型。

结论

RMS网络中这种代谢表示法为捕捉相关代谢背景提供了新的见解。此外,与基因组背景方法一起,它应该能改善对与新代谢途径相对应的基因簇的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c09/4647279/37075e6424e2/12859_2015_809_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验