Suppr超能文献

环境适应性促进了基因组规模代谢网络的模块化。

Environmental versatility promotes modularity in genome-scale metabolic networks.

作者信息

Samal Areejit, Wagner Andreas, Martin Olivier C

机构信息

Laboratoire de Physique Théorique et Modèles Statistiques, CNRS and Univ Paris-Sud, UMR 8626, F-91405 Orsay Cedex, France.

出版信息

BMC Syst Biol. 2011 Aug 24;5:135. doi: 10.1186/1752-0509-5-135.

Abstract

BACKGROUND

The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks.

RESULTS

Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks.

CONCLUSIONS

Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple environments. This organizational principle is insensitive to the environments we consider and to the number of reactions in a metabolic network. Because we observe this principle not just in one or few biological networks, but in large random samples of networks, we propose that it may be a generic principle of metabolic network organization.

摘要

背景

生物网络中模块的普遍存在可能源于模块化组织的进化优势。例如,模块化可能会提高适应性进化的速率,因为模块可以轻松组合成新的排列方式,从而可能使载体受益。相反,模块化可能是某些性状的副产品。我们在此探讨后一种情况是否可能在需要在一种或多种化学环境中维持生命的基因组规模代谢网络中发挥作用。对于此类网络,我们将网络模块定义为一组完全耦合的最大反应集,即其通量只能以固定比例变化。该定义通过利用反应之间的功能联系克服了基于纯图形的代谢分析的局限性。如果一个代谢网络能够从该环境中的营养物质合成生物体的所有生物质化合物,我们就称其在给定化学环境中是可行的。如果一个生物体的代谢能够在许多不同的化学环境中维持生命,那么它的代谢就具有高度的通用性。我们在此探讨通用性是否会影响代谢网络的模块化。

结果

我们使用最近开发的技术从庞大的代谢网络空间中随机采样大量可行的代谢网络,利用通量平衡分析来研究在通用性方面存在差异的计算机模拟代谢网络。我们发现高度通用的网络也是高度模块化的。它们包含更多的模块以及更多组织成模块的反应。一个模块中的大多数或所有反应都与相同的生化途径相关。高度通用的网络中出现的模块通常涉及处理营养物质或密切相关化学物质的反应。我们还观察到,大肠杆菌的代谢比我们最通用的网络还要模块化得多。

结论

我们的研究表明,代谢网络中的模块化可能是功能限制的副产品,例如在多种环境中维持生命的需求。这种组织原则对我们所考虑的环境以及代谢网络中的反应数量不敏感。因为我们不仅在一个或几个生物网络中观察到这一原则,而且在大量随机的网络样本中也观察到了,所以我们提出这可能是代谢网络组织的一个普遍原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e6/3184077/c643bc988df4/1752-0509-5-135-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验