Miao Rujia, Lu Yao, Xing Xiaowei, Li Ying, Huang Zhijun, Zhong Hua, Huang Yun, Chen Alex F, Tang Xiaohong, Li Hongliang, Cai Jingjing, Yuan Hong
From the Department of Cardiology (R.M., H.Z., A.F.C., X.T., J.C., H.Y.) and Center of Clinical Pharmacology (Y.L., X.X., Y.L., Z.H., Y.H., J.C., H.Y.), the Third Xiangya Hospital, Central South University, Changsha, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (H.L.).
Hypertension. 2016 Jan;67(1):86-98. doi: 10.1161/HYPERTENSIONAHA.115.05957. Epub 2015 Nov 16.
Regulator of G-protein signaling 10 (RGS10) is an important member of the RGS family and produces biological effects in multiple organs. We used a genetic approach to study the role of RGS10 in the regulation of pathological cardiac hypertrophy and found that RGS10 can negatively influence pressure overload-induced cardiac remodeling. RGS10 expression was markedly decreased in failing human hearts and hypertrophic murine hearts. The extent of aortic banding-induced cardiac hypertrophy, dysfunction, and fibrosis in RGS10-knockout mice was exacerbated, whereas the heart of transgenic mice with cardiac-specific RGS10 overexpression exhibited an alleviated response to pressure overload. Consistently, RGS10 also inhibited an angiotensin II-induced hypertrophic response in isolated cardiomyocytes. Mechanistically, cardiac remodeling improvement elicited by RGS10 was associated with the abrogation of mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated protein kinase 1/2 signaling. Furthermore, the inhibition of mitogen-activated protein kinase kinase-extracellular signal-regulated protein kinase 1/2 transduction abolished RGS10 deletion-induced hypertrophic aggravation. These findings place RGS10 and its downstream signaling mitogen-activated protein kinase kinase-extracellular signal-regulated protein kinase 1/2 as crucial regulators of pathological cardiac hypertrophy after pressure overload and identify this pathway as a potential therapeutic target to attenuate the pressure overload-driven cardiac remodeling.
G蛋白信号调节因子10(RGS10)是RGS家族的重要成员,在多个器官中发挥生物学作用。我们采用遗传学方法研究RGS10在病理性心肌肥大调节中的作用,发现RGS10可对压力超负荷诱导的心脏重塑产生负面影响。在衰竭的人类心脏和肥大的小鼠心脏中,RGS10表达明显降低。RGS10基因敲除小鼠中主动脉缩窄诱导的心脏肥大、功能障碍和纤维化程度加剧,而心脏特异性过表达RGS10的转基因小鼠心脏对压力超负荷的反应有所减轻。同样,RGS10也抑制了分离的心肌细胞中血管紧张素II诱导的肥大反应。机制上,RGS10引起的心脏重塑改善与丝裂原活化蛋白激酶激酶1/2-细胞外信号调节蛋白激酶1/2信号通路的消除有关。此外,抑制丝裂原活化蛋白激酶激酶-细胞外信号调节蛋白激酶1/2转导可消除RGS10缺失诱导的肥大加重。这些发现表明RGS10及其下游信号丝裂原活化蛋白激酶激酶-细胞外信号调节蛋白激酶1/2是压力超负荷后病理性心肌肥大的关键调节因子,并确定该通路是减轻压力超负荷驱动的心脏重塑的潜在治疗靶点。