Suppr超能文献

超越非极化模型的发色团-蛋白质偶联:理解绿色荧光蛋白中的吸收现象

Chromophore-protein coupling beyond nonpolarizable models: understanding absorption in green fluorescent protein.

作者信息

Daday Csaba, Curutchet Carles, Sinicropi Adalgisa, Mennucci Benedetta, Filippi Claudia

机构信息

MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands.

Departament de Fisicoquı́mica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII, s/n 08028, Barcelona, Spain.

出版信息

J Chem Theory Comput. 2015 Oct 13;11(10):4825-39. doi: 10.1021/acs.jctc.5b00650. Epub 2015 Sep 16.

Abstract

The nature of the coupling of the photoexcited chromophore with the environment in a prototypical system like green fluorescent protein (GFP) is to date not understood, and its description still defies state-of-the-art multiscale approaches. To identify which theoretical framework of the chromophore-protein complex can realistically capture its essence, we employ here a variety of electronic-structure methods, namely, time-dependent density functional theory (TD-DFT), multireference perturbation theory (NEVPT2 and CASPT2), and quantum Monte Carlo (QMC) in combination with static point charges (QM/MM), DFT embedding (QM/DFT), and classical polarizable embedding through induced dipoles (QM/MMpol). Since structural modifications can significantly affect the photophysics of GFP, we also account for thermal fluctuations through extensive molecular dynamics simulations. We find that a treatment of the protein through static point charges leads to significantly blue-shifted excitation energies and that including thermal fluctuations does not cure the coarseness of the MM description. While TDDFT calculations on large cluster models indicate the need of a responsive protein, this response is not simply electrostatic: An improved description of the protein in the ground state or in response to the excitation of the chromophore via ground-state or state-specific DFT and MMpol embedding does not significantly modify the results obtained with static point charges. Through the use of QM/MMpol in a linear response formulation, a different picture in fact emerges in which the main environment response to the chromophore excitation is the one coupling the transition density and the corresponding induced dipoles. Such interaction leads to significant red-shifts and a satisfactory agreement with full QM cluster calculations at the same level of theory. Our findings demonstrate that, ultimately, faithfully capturing the effects of the environment in GFP requires a quantum treatment of large photoexcited regions but that a QM/classical model can be a useful approximation when extended beyond the electrostatic-only formulation.

摘要

在诸如绿色荧光蛋白(GFP)这样的典型系统中,光激发发色团与环境的耦合本质至今仍未被理解,其描述仍然超出了当前最先进的多尺度方法的能力范围。为了确定哪种发色团 - 蛋白质复合物的理论框架能够切实捕捉其本质,我们在此采用了多种电子结构方法,即含时密度泛函理论(TD - DFT)、多参考微扰理论(NEVPT2和CASPT2)以及量子蒙特卡罗(QMC),并结合了静态点电荷(QM/MM)、DFT嵌入(QM/DFT)以及通过诱导偶极进行的经典极化嵌入(QM/MMpol)。由于结构修饰会显著影响GFP的光物理性质我们还通过广泛的分子动力学模拟来考虑热涨落。我们发现,通过静态点电荷处理蛋白质会导致激发能显著蓝移,并且包含热涨落并不能解决MM描述的粗糙性问题。虽然对大型团簇模型的TDDFT计算表明需要一个响应性的蛋白质,但这种响应并非简单的静电响应:通过基态或状态特定的DFT和MMpol嵌入对基态蛋白质或发色团激发响应的改进描述,并不会显著改变使用静态点电荷获得的结果。通过在线性响应公式中使用QM/MMpol,实际上出现了一幅不同的图景,其中环境对发色团激发的主要响应是将跃迁密度与相应的诱导偶极耦合起来的响应。这种相互作用导致显著的红移,并在相同理论水平下与完整的QM团簇计算结果达成令人满意的一致。我们的研究结果表明,最终,要如实地捕捉GFP中环境的影响需要对大的光激发区域进行量子处理,但当超出仅静电的公式时,QM/经典模型可以是一个有用的近似。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验