NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
Phys Chem Chem Phys. 2019 Sep 21;21(35):18988-18998. doi: 10.1039/c9cp03722e. Epub 2019 Aug 29.
Computational approaches have to date failed to fully capture the large (about 0.4 eV) excitation energy tuning displayed by the nearly identical anionic chromophore in different green fluorescent protein (GFP) variants. Here, we present a thorough comparative study of a set of proteins in this sub-family, including the most red- (phiYFP) and blue-shifted (mTFP0.7) ones. We employ a classical polarisable embedding through induced dipoles and combine it with time-dependent density functional theory and multireference perturbation theory in order to capture both state-specific induction contributions and the coupling of the polarisation of the protein to the chromophore transition density. The obtained results show that only upon inclusion of both these two effects generated by the mutual polarisation between the chromophore and the protein can the full spectral tuning be replicated. We finally discuss how this mutual polarisation affects the correlation between excitation energies, dipole moment variation, and molecular electrostatic field.
迄今为止,计算方法未能完全捕捉到不同绿色荧光蛋白 (GFP) 变体中几乎相同的阴离子生色团所展示的大(约 0.4 eV)激发能调谐。在这里,我们对该亚家族中的一组蛋白质进行了全面的比较研究,包括最红(phiYFP)和蓝移(mTFP0.7)的蛋白质。我们采用通过诱导偶极子的经典极化嵌入,并将其与含时密度泛函理论和多参考微扰理论相结合,以捕捉状态特异性感应贡献以及蛋白质极化与生色团跃迁密度的耦合。得到的结果表明,只有在包含生色团和蛋白质之间的相互极化产生的这两种效应的情况下,才能复制完整的光谱调谐。最后,我们讨论了这种相互极化如何影响激发能、偶极矩变化和分子静电场之间的相关性。