CSIR-Indian Institute of Petroleum , Dehradun 248005, India.
Department of Material Science, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India.
ACS Appl Mater Interfaces. 2015 Dec 2;7(47):26022-35. doi: 10.1021/acsami.5b07954. Epub 2015 Nov 17.
Anatase TiO2 nanocubes and nanoparallelepipeds, with highly reactive {111} facets exposed, were developed for the first time through a modified one pot hydrothermal method, through the hydrolysis of tetrabutyltitanate in the presence of oleylamine as the morphology-controlling capping-agent and using ammonia/hydrofluoric acid for stabilizing the {111} faceted surfaces. These nanocubes/nanoparallelepipeds were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and high angle annular dark-field scanning TEM (HAADF-STEM). Accordingly, a possible growth mechanism for the nanostructures is elucidated. The morphology, surface area and the pore size distribution of the TiO2 nanostructures can be tuned simply by altering the HF and ammonia dosage in the precursor solution. More importantly, optimization of the reaction system leads to the assembly of highly crystalline, high surface area, {111} faceted anatase TiO2 nanocubes/nanoparallelepipeds to form uniform mesoscopic void space. We report the development of a novel double layered photoanode for dye sensitized solar cells (DSSCs) made of highly crystalline, self-assembled faceted TiO2 nanocrystals as upper layer and commercial titania nanoparticles paste as under layer. The bilayered DSSC made from TiO2 nanostructures with exposed {111} facets as upper layer shows a much higher power conversion efficiency (9.60%), than DSSCs fabricated with commercial (P25) titania powder (4.67%) or with anatase TiO2 nanostructures having exposed {101} facets (7.59%) as the upper layer. The improved performance in bilayered DSSC made from TiO2 nanostructures with exposed {111} facets as the upper layer is attributed to high dye adsorption and fast electron transport dynamics owing to the unique structural features of the {111} facets in TiO2. Electrochemical impedance spectroscopy (EIS) measurements conducted on the cells supported these conclusions, which showed that the bilayered DSSC made from TiO2 nanostructures with exposed {111} facets as the upper layer possessed lower charge transfer resistance, higher electron recombination resistance, longer electron lifetime and higher collector efficiency characteristics, compared to DSSCs fabricated with commercial (P25) titania powder or with anatase TiO2 nanostructures having exposed {101} facets as the upper layer.
锐钛矿 TiO2 纳米立方体和纳米平行六面体,具有高反应性的{111}面暴露在外,首次通过改良的一锅水热法开发而成,通过四丁基钛酸酯在油胺存在下水解作为形态控制封端剂,并使用氨/氢氟酸稳定{111}面。这些纳米立方体/纳米平行六面体通过 X 射线衍射(XRD)、透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)和高角度环形暗场扫描 TEM(HAADF-STEM)进行了表征。相应地,阐明了纳米结构的可能生长机制。通过改变前驱体溶液中的 HF 和氨用量,可以简单地调节 TiO2 纳米结构的形态、表面积和孔径分布。更重要的是,优化反应体系导致高度结晶、高表面积、{111}面锐钛矿 TiO2 纳米立方体/纳米平行六面体组装成均匀的介观空隙。我们报告了一种新型的染料敏化太阳能电池(DSSC)的双层光阳极的开发,该光阳极由高度结晶的、自组装的锐钛矿 TiO2 纳米晶作为上层和商业二氧化钛纳米颗粒糊作为下层组成。由暴露{111}面的锐钛矿 TiO2 纳米结构作为上层制成的双层 DSSC 比由商业(P25)二氧化钛粉末(4.67%)或暴露{101}面的锐钛矿 TiO2 纳米结构(7.59%)制成的 DSSC 具有更高的功率转换效率(9.60%)。由暴露{111}面的 TiO2 纳米结构作为上层制成的双层 DSSC 的性能提高归因于独特的{111}面结构特征,导致高染料吸附和快速电子传输动力学。对电池进行的电化学阻抗谱(EIS)测量支持了这些结论,表明由暴露{111}面的 TiO2 纳米结构作为上层制成的双层 DSSC 具有较低的电荷转移电阻、较高的电子复合电阻、较长的电子寿命和较高的集电极效率特性,与由商业(P25)二氧化钛粉末或暴露{101}面的锐钛矿 TiO2 纳米结构制成的 DSSC 相比。