Qaid Saif M H, Ghaithan Hamid M, Bawazir Huda S, Bin Ajaj Abrar F, AlHarbi Khulod K, Aldwayyan Abdullah S
Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia.
Nanomaterials (Basel). 2023 Mar 3;13(5):928. doi: 10.3390/nano13050928.
The growth of nanocrystals (NCs) from metal oxide-based substrates with exposed high-energy facets is of particular importance for many important applications, such as solar cells as photoanodes due to the high reactivity of these facets. The hydrothermal method remains a current trend for the synthesis of metal oxide nanostructures in general and titanium dioxide (TiO) in particular since the calcination of the resulting powder after the completion of the hydrothermal method no longer requires a high temperature. This work aims to use a rapid hydrothermal method to synthesize numerous TiO-NCs, namely, TiO nanosheets (TiO-NSs), TiO nanorods (TiO-NRs), and nanoparticles (TiO-NPs). In these ideas, a simple non-aqueous one-pot solvothermal method was employed to prepare TiO-NSs using tetrabutyl titanate Ti(OBu) as a precursor and hydrofluoric acid (HF) as a morphology control agent. Ti(OBu) alone was subjected to alcoholysis in ethanol, yielding only pure nanoparticles (TiO-NPs). Subsequently, in this work, the hazardous chemical HF was replaced by sodium fluoride (NaF) as a means of controlling morphology to produce TiO-NRs. The latter method was required for the growth of high purity brookite TiO NRs structure, the most difficult TiO polymorph to synthesize. The fabricated components are then morphologically evaluated using equipment, such as transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), electron diffraction (SAED), and X-ray diffraction (XRD). In the results, the TEM image of the developed NCs shows the presence of TiO-NSs with an average side length of about 20-30 nm and a thickness of 5-7 nm. In addition, the image TEM shows TiO-NRs with diameters between 10 and 20 nm and lengths between 80 and 100 nm, together with crystals of smaller size. The phase of the crystals is good, confirmed by XRD. The anatase structure, typical of TiO-NS and TiO-NPs, and the high-purity brookite-TiO-NRs structure, were evident in the produced nanocrystals, according to XRD. SAED patterns confirm that the synthesis of high quality single crystalline TiO-NSs and TiO-NRs with the exposed {001} facets are the exposed facets, which have the upper and lower dominant facets, high reactivity, high surface energy, and high surface area. TiO-NSs and TiO-NRs could be grown, corresponding to about 80% and 85% of the {001} outer surface area in the nanocrystal, respectively.
从具有暴露高能面的金属氧化物基衬底上生长纳米晶体(NCs)对于许多重要应用尤为重要,例如太阳能电池中的光阳极,因为这些面具有高反应活性。水热法总体上仍是合成金属氧化物纳米结构,特别是二氧化钛(TiO₂)的当前趋势,因为水热法完成后所得粉末的煅烧不再需要高温。这项工作旨在使用快速水热法合成大量TiO₂ - NCs,即TiO₂纳米片(TiO₂ - NSs)、TiO₂纳米棒(TiO₂ - NRs)和纳米颗粒(TiO₂ - NPs)。在这些思路中,采用一种简单的非水一锅溶剂热法,以钛酸四丁酯Ti(OBu)₄作为前驱体,氢氟酸(HF)作为形貌控制剂来制备TiO₂ - NSs。单独的Ti(OBu)₄在乙醇中进行醇解,仅生成纯纳米颗粒(TiO₂ - NPs)。随后,在这项工作中,用氟化钠(NaF)替代危险化学品HF作为控制形貌的手段来制备TiO₂ - NRs。后一种方法是生长高纯度板钛矿TiO₂ NRs结构所必需的,板钛矿是最难合成的TiO₂多晶型物。然后使用诸如透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)、电子衍射(SAED)和X射线衍射(XRD)等设备对制备的组件进行形貌评估。结果显示,所制备的NCs的TEM图像表明存在平均边长约为20 - 30 nm且厚度为5 - 7 nm的TiO₂ - NSs。此外,TEM图像显示直径在10至20 nm之间且长度在80至100 nm之间的TiO₂ - NRs以及尺寸较小的晶体。XRD证实晶体的相良好。根据XRD,在制备的纳米晶体中明显存在TiO₂ - NS和TiO₂ - NPs典型的锐钛矿结构以及高纯度板钛矿 - TiO₂ - NRs结构。SAED图谱证实合成了具有暴露{001}面的高质量单晶TiO₂ - NSs和TiO₂ - NRs,{001}面是具有上下主导面、高反应活性、高表面能和高表面积的暴露面。TiO₂ - NSs和TiO₂ - NRs能够生长,分别对应纳米晶体中约80%和85%的{001}外表面面积。