Suppr超能文献

广义弹簧张量模型用于蛋白质涨落动力学和构象变化。

Generalized spring tensor models for protein fluctuation dynamics and conformation changes.

机构信息

Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011, USA,

出版信息

Adv Exp Med Biol. 2014;805:107-35. doi: 10.1007/978-3-319-02970-2_5.

Abstract

BACKGROUND

In the last decade, various coarse-grained elastic network models have been developed to study the large-scale motions of proteins and protein complexes where computer simulations using detailed all-atom models are not feasible. Among these models, the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM) have been widely used. Both models have strengths and limitations. GNM can predict the relative magnitudes of protein fluctuations well, but due to its isotropy assumption, it cannot be applied to predict the directions of the fluctuations. In contrast, ANM adds the ability to do the latter, but loses a significant amount of precision in the prediction of the magnitudes.

RESULTS

In this book chapter, we present a single model, called generalized spring tensor model (STeM), that is able to predict well both the magnitudes and the directions of the fluctuations. Specifically, STeM performs equally well in B-factor predictions as GNM and has the ability to predict the directions of fluctuations as ANM. This is achieved by employing a physically more realistic potential, the Gō-like potential. The potential, which is more sophisticated than that of either GNM or ANM, though adds complexity to the derivation process of the Hessian matrix (which fortunately has been done once for all and the MATLAB code is freely available electronically at http://www.cs.iastate.edu/~gsong/STeM ), causes virtually no performance slowdown. In addition, we show that STeM can be further extended to an all-atom model and protein fluctuation dynamics computed by all-atom STeM matches closely with that by Normal Mode Analysis (NMA).

CONCLUSIONS

Derived from a physically more realistic potential, STeM proves to be a natural solution in which advantages that used to exist in two separate models, namely GNM and ANM, are achieved in one single model. It thus lightens the burden to work with two separate models and to relate the modes of GNM with those of ANM at times. By examining the contributions of different interaction terms in the Gō potential to the fluctuation dynamics, STeM reveals, (i) a physical explanation for why the distance-dependent, inverse distance square (i.e., 1/r (2)) spring constants perform better than the uniform ones, and (ii), the importance of three-body and four-body interactions to properly modeling protein dynamics.STeM is not limited to coarse-grained protein models that use a single bead, usually the alpha carbon, to represent each residue. The core idea of STeM, deriving the Hessian matrix directly from a physically realistic potential, can be extended to all-atom models as well. We did this and discovered that all-atom STeM model represents a highly close approximation of NMA, yet without the need for energy minimization.

摘要

背景

在过去的十年中,已经开发出了各种粗粒弹性网络模型,以研究蛋白质和蛋白质复合物的大规模运动,在这些运动中,使用详细的全原子模型进行计算机模拟是不可行的。在这些模型中,高斯网络模型(GNM)和各向异性网络模型(ANM)得到了广泛的应用。这两种模型都有其优缺点。GNM 可以很好地预测蛋白质波动的相对幅度,但由于其各向同性假设,它不能用于预测波动的方向。相比之下,ANM 增加了预测后者的能力,但在预测幅度方面的精度显著降低。

结果

在这一章中,我们提出了一种单一的模型,称为广义弹簧张量模型(STeM),它能够很好地预测波动的幅度和方向。具体来说,STeM 在 B 因子预测方面的表现与 GNM 一样好,并且具有与 ANM 预测波动方向的能力。这是通过采用更符合物理实际的势能,即 Gō 样势能来实现的。尽管该势能比 GNM 或 ANM 更复杂,这增加了海森矩阵推导过程的复杂性(幸运的是,已经一次性完成了这个过程,MATLAB 代码可在 http://www.cs.iastate.edu/~gsong/STeM 上免费获得电子版本),但几乎不会导致性能下降。此外,我们还表明,STeM 可以进一步扩展到全原子模型,并且通过全原子 STeM 计算得到的蛋白质波动动力学与通过正常模式分析(NMA)得到的结果非常吻合。

结论

从更符合物理实际的势能中推导出来的 STeM 被证明是一种自然的解决方案,它将两个独立模型(即 GNM 和 ANM)的优势结合在一个单一的模型中。因此,它减轻了使用两个独立模型的负担,并且有时还可以将 GNM 的模式与 ANM 的模式联系起来。通过研究 Gō 势能中不同相互作用项对波动动力学的贡献,STeM 揭示了(i)距离相关、逆距离平方(即 1/r (2))弹簧常数表现优于均匀常数的物理解释,以及(ii)三体和四体相互作用对于正确建模蛋白质动力学的重要性。STeM 不仅限于使用单个珠子(通常是α碳原子)代表每个残基的粗粒蛋白质模型。STeM 的核心思想是直接从物理上合理的势能中推导出海森矩阵,这个核心思想也可以扩展到全原子模型。我们这样做了,并发现全原子 STeM 模型非常接近 NMA 的近似,但不需要进行能量最小化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验