Mezei Pál D, Csonka Gábor I, Kállay Mihály
Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , H-1521 Budapest, Hungary.
MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics , H-1521 Budapest, P.O. Box 91, Hungary.
J Chem Theory Comput. 2015 Jun 9;11(6):2879-88. doi: 10.1021/acs.jctc.5b00223. Epub 2015 May 26.
We assess the performance of the semilocal PBE functional; its global hybrid variants; the highly parametrized empirical M06-2X and M08-SO; the range separated rCAM-B3LYP and MCY3; the atom-pairwise or nonlocal dispersion corrected semilocal PBE and TPSS; the dispersion corrected range-separated ωB97X-D; the dispersion corrected double hybrids such as PWPB95-D3; the direct random phase approximation, dRPA, with Hartree-Fock, Perdew-Burke-Ernzerhof, and Perdew-Burke-Ernzerhof hybrid reference orbitals and the RPAX2 method based on a Perdew-Burke-Ernzerhof exchange reference orbitals for the Diels-Alder, DARC; and self-interaction error sensitive, SIE11, reaction energy test sets with large, augmented correlation consistent valence basis sets. The dRPA energies for the DARC test set are extrapolated to the complete basis set limit. CCSD(T)/CBS energies were used as a reference. The standard global hybrid functionals show general improvements over the typical endothermic energy error of semilocal functionals, but despite the increased accuracy the precision of the methods increases only slightly, and thus all reaction energies are simply shifted into the exothermic direction. Dispersion corrections give mixed results for the DARC test set. Vydrov-Van Voorhis 10 correction to the reaction energies gives superior quality results compared to the too-small D3 correction. Functionals parametrized for energies of noncovalent interactions like M08-SO give reasonable results without any dispersion correction. The dRPA method that seamlessly and theoretically correctly includes noncovalent interaction energies gives excellent results with properly chosen reference orbitals. As the results for the SIE11 test set and H2(+) dissociation show that the dRPA methods suffer from delocalization error, good reaction energies for the DARC test set from a given method do not prove that the method is free from delocalization error. The RPAX2 method shows good performance for the DARC, the SIE11 test sets, and for the H2(+) and H2 potential energy curves showing no one-electron self-interaction error and reduced static correlation errors at the same time. We also suggest simplified DARC6 and SIE9 test sets for future benchmarking.
我们评估了半局域PBE泛函;其全局杂化变体;参数化程度高的经验性M06 - 2X和M08 - SO;范围分离的rCAM - B3LYP和MCY3;原子对或非局域色散校正的半局域PBE和TPSS;色散校正的范围分离的ωB97X - D;色散校正的双杂化泛函如PWPB95 - D3;具有Hartree - Fock、Perdew - Burke - Ernzerhof和Perdew - Burke - Ernzerhof杂化参考轨道的直接随机相位近似dRPA,以及基于Perdew - Burke - Ernzerhof交换参考轨道用于狄尔斯 - 阿尔德反应(DARC)的RPAX2方法;还有对自相互作用误差敏感的SIE11反应能测试集,采用大的、增强的相关一致价基组。将DARC测试集的dRPA能量外推到完全基组极限。CCSD(T)/CBS能量用作参考。标准的全局杂化泛函相对于半局域泛函典型的吸热能量误差总体上有所改进,但尽管精度有所提高,这些方法的精密度仅略有增加,因此所有反应能只是简单地向放热方向移动。色散校正在DARC测试集上给出了混合结果。与过小的D3校正相比,Vydrov - Van Voorhis对反应能的10校正给出了更高质量的结果。为非共价相互作用能量参数化的泛函如M08 - SO在没有任何色散校正的情况下给出了合理的结果。通过正确选择参考轨道,能无缝且理论上正确包含非共价相互作用能量的dRPA方法给出了出色的结果。由于SIE11测试集和H2(+)解离的结果表明dRPA方法存在离域误差,给定方法对DARC测试集给出的良好反应能并不能证明该方法没有离域误差。RPAX2方法在DARC、SIE11测试集以及H2(+)和H2势能曲线方面表现良好,同时显示没有单电子自相互作用误差且静态相关误差减小。我们还建议了简化后的DARC6和SIE9测试集用于未来的基准测试。