Suppr超能文献

张量超收缩二阶莫勒-普莱塞特微扰理论:网格优化与反应能量

Tensor Hypercontraction Second-Order Møller-Plesset Perturbation Theory: Grid Optimization and Reaction Energies.

作者信息

Schumacher Sara I L Kokkila, Hohenstein Edward G, Parrish Robert M, Wang Lee-Ping, Martínez Todd J

机构信息

Department of Chemistry and the PULSE Institute, Stanford University , Stanford, California 94305, United States.

SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States.

出版信息

J Chem Theory Comput. 2015 Jul 14;11(7):3042-52. doi: 10.1021/acs.jctc.5b00272.

Abstract

We have recently introduced the tensor hypercontraction (THC) method for electronic structure, including MP2. Here, we present an algorithm for THC-MP2 that lowers the memory requirements as well as the prefactor while maintaining the formal quartic scaling that we demonstrated previously. We also describe a procedure to optimize quadrature grids used in grid-based least-squares (LS) THC-MP2. We apply this algorithm to generate grids for first-row atoms with less than 100 points/atom while incurring negligible errors in the computed energies. We benchmark the LS-THC-MP2 method using optimized grids for a wide variety of tests sets including conformational energies and reaction barriers in both the cc-pVDZ and cc-pVTZ basis sets. These tests demonstrate that the THC methodology is not limited to small basis sets and that it incurs negligible errors in both absolute and relative energies.

摘要

我们最近引入了用于电子结构(包括MP2)的张量超收缩(THC)方法。在此,我们提出了一种用于THC-MP2的算法,该算法在保持我们之前证明的形式四次方缩放比例的同时,降低了内存需求以及前置因子。我们还描述了一种优化基于网格的最小二乘法(LS)THC-MP2中使用的积分网格的程序。我们应用此算法为第一行原子生成网格,每个原子的点数少于100个,同时在计算能量时产生可忽略不计的误差。我们使用优化网格对LS-THC-MP2方法进行基准测试,用于各种测试集,包括cc-pVDZ和cc-pVTZ基组中的构象能量和反应势垒。这些测试表明,THC方法不限于小基组,并且在绝对能量和相对能量方面都产生可忽略不计的误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验