Schumacher Sara I L Kokkila, Hohenstein Edward G, Parrish Robert M, Wang Lee-Ping, Martínez Todd J
Department of Chemistry and the PULSE Institute, Stanford University , Stanford, California 94305, United States.
SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States.
J Chem Theory Comput. 2015 Jul 14;11(7):3042-52. doi: 10.1021/acs.jctc.5b00272.
We have recently introduced the tensor hypercontraction (THC) method for electronic structure, including MP2. Here, we present an algorithm for THC-MP2 that lowers the memory requirements as well as the prefactor while maintaining the formal quartic scaling that we demonstrated previously. We also describe a procedure to optimize quadrature grids used in grid-based least-squares (LS) THC-MP2. We apply this algorithm to generate grids for first-row atoms with less than 100 points/atom while incurring negligible errors in the computed energies. We benchmark the LS-THC-MP2 method using optimized grids for a wide variety of tests sets including conformational energies and reaction barriers in both the cc-pVDZ and cc-pVTZ basis sets. These tests demonstrate that the THC methodology is not limited to small basis sets and that it incurs negligible errors in both absolute and relative energies.
我们最近引入了用于电子结构(包括MP2)的张量超收缩(THC)方法。在此,我们提出了一种用于THC-MP2的算法,该算法在保持我们之前证明的形式四次方缩放比例的同时,降低了内存需求以及前置因子。我们还描述了一种优化基于网格的最小二乘法(LS)THC-MP2中使用的积分网格的程序。我们应用此算法为第一行原子生成网格,每个原子的点数少于100个,同时在计算能量时产生可忽略不计的误差。我们使用优化网格对LS-THC-MP2方法进行基准测试,用于各种测试集,包括cc-pVDZ和cc-pVTZ基组中的构象能量和反应势垒。这些测试表明,THC方法不限于小基组,并且在绝对能量和相对能量方面都产生可忽略不计的误差。