Sacchetta Filippo, Bangerter Felix H, Laqua Henryk, Ochsenfeld Christian
Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany.
Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany.
J Chem Theory Comput. 2025 May 27;21(10):5083-5102. doi: 10.1021/acs.jctc.5c00230. Epub 2025 May 12.
In recent years, rapid improvements in computer hardware, as well as theoretical and algorithmic advances have enabled the calculation of ever larger systems in computational chemistry. In this avenue, we present efficient implementations of the scaled opposite-spin (SOS) second-order approximate coupled cluster (CC2) method and the closely related second-order algebraic diagrammatic construction (ADC(2)) method. Our implementations applies the least-squares tensor hypercontraction (THC) approximation, for which a new density-based integral-direct reformulation of the grid-projection of the electron integral tensor is presented. Together with screening based on local Cholesky orbitals stemming from the decomposition of the one-particle densities (CDD) in the Laplace integration and optimized block-sparse linear algebra, effectively scaling variants of linear-response (LR) SOS-CC2 and SOS-ADC(2) are obtained. The derived CDD-THC-SOS-LR-CC2/ADC(2) methods are shown to be capable of targeting excitation energies for systems with up to ∼1000 atoms and ∼10,000 basis functions on a single compute node.
近年来,计算机硬件的迅速改进以及理论和算法的进展,使得计算化学中能够计算越来越大的体系。在这条道路上,我们展示了缩放反自旋(SOS)二阶近似耦合簇(CC2)方法和密切相关的二阶代数图示构建(ADC(2))方法的高效实现。我们的实现采用了最小二乘张量超收缩(THC)近似,为此提出了一种基于密度的电子积分张量网格投影的新的积分直接重新表述。结合基于拉普拉斯积分中一粒子密度分解(CDD)产生的局部Cholesky轨道的筛选以及优化的块稀疏线性代数,有效地获得了线性响应(LR)SOS-CC2和SOS-ADC(2)的缩放变体。所推导的CDD-THC-SOS-LR-CC2/ADC(2)方法被证明能够在单个计算节点上针对具有多达约1000个原子和约10000个基函数的体系计算激发能。