Suppr超能文献

通过与实验结果高度相关的分子动力学对肽-MHC结合亲和力进行快速、精确且可重复的预测。

Rapid, Precise, and Reproducible Prediction of Peptide-MHC Binding Affinities from Molecular Dynamics That Correlate Well with Experiment.

作者信息

Wan Shunzhou, Knapp Bernhard, Wright David W, Deane Charlotte M, Coveney Peter V

机构信息

Centre for Computational Science, Department of Chemistry, University College London , London WC1H 0AJ, United Kingdom.

Protein Informatics Group, Department of Statistics, University of Oxford , Oxford, OX1 3TG, United Kingdom.

出版信息

J Chem Theory Comput. 2015 Jul 14;11(7):3346-56. doi: 10.1021/acs.jctc.5b00179. Epub 2015 Jun 24.

Abstract

The presentation of potentially pathogenic peptides by major histocompatibility complex (MHC) molecules is one of the most important processes in adaptive immune defense. Prediction of peptide-MHC (pMHC) binding affinities is therefore a principal objective of theoretical immunology. Machine learning techniques achieve good results if substantial experimental training data are available. Approaches based on structural information become necessary if sufficiently similar training data are unavailable for a specific MHC allele, although they have often been deemed to lack accuracy. In this study, we use a free energy method to rank the binding affinities of 12 diverse peptides bound by a class I MHC molecule HLA-A*02:01. The method is based on enhanced sampling of molecular dynamics calculations in combination with a continuum solvent approximation and includes estimates of the configurational entropy based on either a one or a three trajectory protocol. It produces precise and reproducible free energy estimates which correlate well with experimental measurements. If the results are combined with an amino acid hydrophobicity scale, then an extremely good ranking of peptide binding affinities emerges. Our approach is rapid, robust, and applicable to a wide range of ligand-receptor interactions without further adjustment.

摘要

主要组织相容性复合体(MHC)分子呈递潜在致病肽是适应性免疫防御中最重要的过程之一。因此,预测肽-MHC(pMHC)结合亲和力是理论免疫学的主要目标。如果有大量实验训练数据,机器学习技术能取得良好结果。对于特定的MHC等位基因,若没有足够相似的训练数据,则基于结构信息的方法就变得必要,尽管这些方法常被认为缺乏准确性。在本研究中,我们使用一种自由能方法对由I类MHC分子HLA-A*02:01结合的12种不同肽的结合亲和力进行排序。该方法基于分子动力学计算的增强采样并结合连续溶剂近似,且包括基于单轨迹或三轨迹协议的构象熵估计。它能产生精确且可重复的自由能估计值,与实验测量值相关性良好。如果将结果与氨基酸疏水性标度相结合,那么就能得到肽结合亲和力的极佳排序。我们的方法快速、稳健,适用于广泛的配体-受体相互作用,无需进一步调整。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验