Suppr超能文献

我们开发了一个列线图,以增强多项逻辑回归模型在诊断研究中的使用。

A nomogram was developed to enhance the use of multinomial logistic regression modeling in diagnostic research.

机构信息

Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, PO Box 85060, Stratenum 6.131, Utrecht 3508 AB, The Netherlands.

Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, PO Box 85060, Stratenum 6.131, Utrecht 3508 AB, The Netherlands.

出版信息

J Clin Epidemiol. 2016 Mar;71:51-7. doi: 10.1016/j.jclinepi.2015.10.016. Epub 2015 Nov 11.

Abstract

OBJECTIVES

We developed a nomogram to facilitate the interpretation and presentation of results from multinomial logistic regression models.

STUDY DESIGN AND SETTING

We analyzed data from 376 frail elderly with complaints of dyspnea. Potential underlying disease categories were heart failure (HF), chronic obstructive pulmonary disease (COPD), the combination of both (HF and COPD), and any other outcome (other). A nomogram for multinomial model was developed to depict the relative importance of each predictor and to calculate the probability for each disease category for a given patient. Additionally, model performance of the multinomial regression model was assessed.

RESULTS

Prevalence of HF and COPD was 14% (n = 54), HF 24% (n = 90), COPD 20% (n = 75), and Other 42% (n = 157). The relative importance of the individual predictors varied across these disease categories or was even reversed. The pairwise C statistics ranged from 0.75 (between HF and Other) to 0.96 (between HF and COPD and Other). The nomogram can be used to rank the disease categories from most to least likely within each patient or to calculate the predicted probabilities.

CONCLUSIONS

Our new nomogram is a useful tool to present and understand the results of a multinomial regression model and could enhance the applicability of such models in daily practice.

摘要

目的

我们开发了一种列线图,以方便解释和呈现多项逻辑回归模型的结果。

研究设计和设置

我们分析了 376 名有呼吸困难症状的虚弱老年人的数据。潜在的基础疾病类别有心衰(HF)、慢性阻塞性肺疾病(COPD)、两者的组合(HF 和 COPD)以及任何其他结果(其他)。为多项模型开发了一个列线图,以描述每个预测因子的相对重要性,并计算给定患者每个疾病类别的概率。此外,还评估了多项回归模型的性能。

结果

HF 和 COPD 的患病率为 14%(n=54),HF 为 24%(n=90),COPD 为 20%(n=75),其他为 42%(n=157)。个体预测因子的相对重要性在这些疾病类别中有所不同,甚至相反。两两 C 统计量范围从 0.75(HF 与其他之间)到 0.96(HF 与 COPD 和其他之间)。该列线图可用于对每个患者的疾病类别进行从最有可能到最不可能的排序,也可用于计算预测概率。

结论

我们的新列线图是展示和理解多项回归模型结果的有用工具,可以增强此类模型在日常实践中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验