Suppr超能文献

基于M2巨噬细胞的胃癌手术切除后预后列线图

M2 Macrophage-Based Prognostic Nomogram for Gastric Cancer After Surgical Resection.

作者信息

Hu Jianwen, Ma Yongchen, Ma Ju, Yang Yanpeng, Ning Yingze, Zhu Jing, Wang Pengyuan, Chen Guowei, Liu Yucun

机构信息

Department of General Surgery, Peking University First Hospital, Beijing, China.

Endoscopy Center, Peking University First Hospital, Beijing, China.

出版信息

Front Oncol. 2021 Aug 12;11:690037. doi: 10.3389/fonc.2021.690037. eCollection 2021.

Abstract

A good prediction model is useful to accurately predict patient prognosis. Tumor-node-metastasis (TNM) staging often cannot accurately predict prognosis when used alone. Some researchers have shown that the infiltration of M2 macrophages in many tumors indicates poor prognosis. This approach has the potential to predict prognosis more accurately when used in combination with TNM staging, but there is less research in gastric cancer. A multivariate analysis demonstrated that CD163 expression, TNM staging, age, and gender were independent risk factors for overall survival. Thus, these parameters were assessed to develop the nomogram in the training data set, which was tested in the validation and whole data sets. The model showed a high degree of discrimination, calibration, and good clinical benefit in the training, validation, and whole data sets. In conclusion, we combined CD163 expression in macrophages, TNM staging, age, and gender to develop a nomogram to predict 3- and 5-year overall survivals after curative resection for gastric cancer. This model has the potential to provide further diagnostic and prognostic value for patients with gastric cancer.

摘要

一个好的预测模型有助于准确预测患者的预后。肿瘤-淋巴结-转移(TNM)分期单独使用时往往无法准确预测预后。一些研究人员表明,许多肿瘤中M2巨噬细胞的浸润预示着预后不良。这种方法与TNM分期联合使用时有可能更准确地预测预后,但在胃癌方面的研究较少。多因素分析表明,CD163表达、TNM分期、年龄和性别是总生存的独立危险因素。因此,在训练数据集中评估这些参数以构建列线图,并在验证数据集和全数据集进行测试。该模型在训练集、验证集和全数据集中均显示出高度的区分度、校准度和良好的临床效益。总之,我们结合巨噬细胞中的CD163表达、TNM分期、年龄和性别,构建了一个列线图来预测胃癌根治性切除术后3年和5年的总生存率。该模型有可能为胃癌患者提供进一步的诊断和预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58a4/8397443/0f979da5272f/fonc-11-690037-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验