Hardiansyah Deni, Maass Christian, Attarwala Ali Asgar, Müller Berthold, Kletting Peter, Mottaghy Felix M, Glatting Gerhard
Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Eur J Nucl Med Mol Imaging. 2016 May;43(5):871-880. doi: 10.1007/s00259-015-3248-6. Epub 2015 Nov 18.
Accurate treatment planning is recommended in peptide-receptor radionuclide therapy (PRRT) to minimize the toxicity to organs at risk while maximizing tumor cell sterilization. The aim of this study was to quantify the effect of different degrees of individualization on the prediction accuracy of individual therapeutic biodistributions in patients with neuroendocrine tumors (NETs).
A recently developed physiologically based pharmacokinetic (PBPK) model was fitted to the biokinetic data of 15 patients with NETs after pre-therapeutic injection of (111)In-DTPAOC. Mathematical phantom patients (MPP) were defined using the assumed true (true MPP), mean (MPP 1A) and median (MPP 1B) parameter values of the patient group. Alterations of the degree of individualization were introduced to both mean and median patients by including patient-specific information as a priori knowledge: physical parameters and hematocrit (MPP 2A/2B). Successively, measurable individual biokinetic parameters were added: tumor volume V tu (MPP 3A/3B), glomerular filtration rate GFR (MPP 4A/4B), and tumor perfusion f tu (MPP 5A/5B). Furthermore, parameters of MPP 5A/5B and a simulated (68)Ga-DOTATATE PET measurement 60 min p.i. were used together with the population values used as Bayesian parameters (MPP 6A/6B). Therapeutic biodistributions were simulated assuming an infusion of (90)Y-DOTATATE (3.3 GBq) over 30 min to all MPPs. Time-integrated activity coefficients were predicted for all MPPs and compared to the true MPPs for each patient in tumor, kidneys, spleen, liver, remainder, and whole body to obtain the relative differences RD.
The large RD values of MPP 1A [RDtumor = (625 ± 1266)%, RDkidneys = (11 ± 38)%], and MPP 1B [RDtumor = (197 ± 505)%, RDkidneys = (11 ± 39)%] demonstrate that individual treatment planning is needed due to large physiological differences between patients. Although addition of individual patient parameters reduced the deviations considerably [MPP 5A: RDtumor = (-2 ± 27)% and RDkidneys = (16 ± 43)%; MPP 5B: RDtumor = (2 ± 28)% and RDkidneys = (7 ± 40)%] errors were still large. For the kidneys, prediction accuracy was considerably improved by including the PET measurement [MPP 6A/MPP 6B: RDtumor = (-2 ± 22)% and RDkidneys = (-0.1 ± 0.5)%].
Individualized treatment planning is needed in the investigated patient group. The use of a PBPK model and the inclusion of patient specific data, e.g., weight, tumor volume, and glomerular filtration rate, do not suffice to predict the therapeutic biodistribution. Integrating all available a priori information in the PBPK model and using additionally PET data measured at one time point for tumor, kidneys, spleen, and liver could possibly be sufficient to perform an individualized treatment planning.
肽受体放射性核素治疗(PRRT)建议进行精确的治疗计划,以尽量减少对危及器官的毒性,同时最大限度地杀灭肿瘤细胞。本研究的目的是量化不同程度的个体化对神经内分泌肿瘤(NETs)患者个体治疗生物分布预测准确性的影响。
将最近开发的基于生理的药代动力学(PBPK)模型与15例NETs患者在治疗前注射(111)In-DTPAOC后的生物动力学数据进行拟合。使用患者组的假定真实(真实数学模型患者)、均值(数学模型患者1A)和中位数(数学模型患者1B)参数值定义数学模型患者。通过将患者特定信息作为先验知识纳入均值和中位数患者,引入个体化程度的改变:身体参数和血细胞比容(数学模型患者2A/2B)。随后,添加可测量的个体生物动力学参数:肿瘤体积V tu(数学模型患者3A/3B)、肾小球滤过率GFR(数学模型患者4A/4B)和肿瘤灌注f tu(数学模型患者5A/5B)。此外,数学模型患者5A/5B的参数和注射后60分钟模拟的(68)Ga-DOTATATE PET测量值与用作贝叶斯参数的总体值一起使用(数学模型患者6A/6B)。假设向所有数学模型患者输注(90)Y-DOTATATE(3.3 GBq)30分钟,模拟治疗生物分布。预测所有数学模型患者的时间积分活度系数,并与每个患者在肿瘤、肾脏、脾脏、肝脏、其余部分和全身的真实数学模型患者进行比较,以获得相对差异RD。
数学模型患者1A的RD值较大[RD肿瘤=(625±1266)%,RD肾脏=(11±38)%],数学模型患者1B的RD值也较大[RD肿瘤=(197±505)%,RD肾脏=(11±39)%],这表明由于患者之间存在较大的生理差异,需要进行个体化治疗计划。尽管添加个体患者参数可显著降低偏差[数学模型患者5A:RD肿瘤=(-2±27)%,RD肾脏=(16±43)%;数学模型患者5B:RD肿瘤=(2±28)%,RD肾脏=(7±40)%],但误差仍然很大。对于肾脏,通过纳入PET测量值,预测准确性有显著提高[数学模型患者6A/数学模型患者6B:RD肿瘤=(-2±22)%,RD肾脏=(-0.1±0.5)%]。
在所研究的患者组中需要个体化治疗计划。使用PBPK模型并纳入患者特定数据,如体重、肿瘤体积和肾小球滤过率,不足以预测治疗生物分布。将所有可用的先验信息整合到PBPK模型中,并额外使用在一个时间点测量的肿瘤、肾脏、脾脏和肝脏的PET数据,可能足以进行个体化治疗计划。