Mo Xiu-Lei, Luo Yin, Ivanov Andrei A, Su Rina, Havel Jonathan J, Li Zenggang, Khuri Fadlo R, Du Yuhong, Fu Haian
Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
J Mol Cell Biol. 2016 Jun;8(3):271-81. doi: 10.1093/jmcb/mjv064. Epub 2015 Nov 16.
Large-scale genomics studies have generated vast resources for in-depth understanding of vital biological and pathological processes. A rising challenge is to leverage such enormous information to rapidly decipher the intricate protein-protein interactions (PPIs) for functional characterization and therapeutic interventions. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform with both high sensitivity and robustness in a mammalian cell environment remains to be established. Here we describe the development and integration of a highly sensitive NanoLuc luciferase-based bioluminescence resonance energy transfer technology, termed BRET(n), which enables ultra-high-throughput (uHTS) PPI detection in live cells with streamlined co-expression of biosensors in a miniaturized format. We further demonstrate the application of BRET(n) in uHTS format in chemical biology research, including the discovery of chemical probes that disrupt PRAS40 dimerization and pathway connectivity profiling among core members of the Hippo signaling pathway. Such hippo pathway profiling not only confirmed previously reported PPIs, but also revealed two novel interactions, suggesting new mechanisms for regulation of Hippo signaling. Our BRET(n) biosensor platform with uHTS capability is expected to accelerate systematic PPI network mapping and PPI modulator-based drug discovery.
大规模基因组学研究为深入了解重要的生物学和病理过程提供了丰富的资源。一个日益严峻的挑战是如何利用这些海量信息快速解析复杂的蛋白质-蛋白质相互作用(PPI),以进行功能表征和治疗干预。尽管已经采用了多种强大的技术来检测PPI,但在哺乳动物细胞环境中,一个兼具高灵敏度和稳健性的单一PPI生物传感器平台仍有待建立。在此,我们描述了一种基于超灵敏纳米荧光素酶的生物发光共振能量转移技术(称为BRET(n))的开发与整合,该技术能够在活细胞中以小型化形式简化生物传感器的共表达,实现超高通量(uHTS)PPI检测。我们进一步展示了BRET(n)在化学合成生物学研究中的uHTS应用,包括发现破坏PRAS40二聚化的化学探针以及对Hippo信号通路核心成员之间的通路连接性进行分析。这种Hippo通路分析不仅证实了先前报道的PPI,还揭示了两种新的相互作用,提示了Hippo信号调节的新机制。我们具有uHTS能力的BRET(n)生物传感器平台有望加速系统PPI网络图谱绘制以及基于PPI调节剂的药物发现。