Ding Ning, Jiang Yaoyukun, Lee Sangsin, Cheng Zihao, Ran Xinchun, Ding Yujing, Ge Robbie, Zhang Yifei, Yang Zhongyue J
Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, United States.
Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States; Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, CA 94720, United States.
Biotechnol Adv. 2025 Sep;82:108598. doi: 10.1016/j.biotechadv.2025.108598. Epub 2025 May 10.
Enzyme miniaturization offers a transformative approach to overcome limitations posed by the large size of conventional enzymes in industrial, therapeutic, and diagnostic applications. However, the evolutionary optimization of enzymes for activity has not inherently favored compact structures, creating challenges for modern applications requiring smaller catalysts. In this review, we surveyed the advantages of miniature enzymes, including enhanced expressivity, folding efficiency, thermostability, and resistance to proteolysis. We described the applications of miniature enzymes as industrial catalysts, therapeutic agents, and diagnostic elements. We highlighted strategies such as genome mining, rational design, random deletion, and de novo design for achieving enzyme miniaturization, integrating both computational and experimental techniques. By investigating these approaches, we aim to provide a framework for advancing enzyme engineering, emphasizing the unique potential of miniature enzymes to revolutionize biocatalysis, gene therapy, and biosensing technologies.
酶的小型化提供了一种变革性方法,以克服传统酶在工业、治疗和诊断应用中因体积庞大而带来的限制。然而,针对活性对酶进行的进化优化并没有天然地倾向于紧凑结构,这给需要更小催化剂的现代应用带来了挑战。在本综述中,我们调查了小型化酶的优势,包括增强的表达性、折叠效率、热稳定性和抗蛋白酶解能力。我们描述了小型化酶作为工业催化剂、治疗剂和诊断元件的应用。我们强调了实现酶小型化的策略,如基因组挖掘、理性设计、随机删除和从头设计,整合了计算和实验技术。通过研究这些方法,我们旨在提供一个推进酶工程的框架,强调小型化酶在彻底改变生物催化、基因治疗和生物传感技术方面的独特潜力。