Suppr超能文献

酶的小型化:革新未来的生物催化剂。

Enzyme miniaturization: Revolutionizing future biocatalysts.

作者信息

Ding Ning, Jiang Yaoyukun, Lee Sangsin, Cheng Zihao, Ran Xinchun, Ding Yujing, Ge Robbie, Zhang Yifei, Yang Zhongyue J

机构信息

Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, United States.

Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States; Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, CA 94720, United States.

出版信息

Biotechnol Adv. 2025 Sep;82:108598. doi: 10.1016/j.biotechadv.2025.108598. Epub 2025 May 10.

Abstract

Enzyme miniaturization offers a transformative approach to overcome limitations posed by the large size of conventional enzymes in industrial, therapeutic, and diagnostic applications. However, the evolutionary optimization of enzymes for activity has not inherently favored compact structures, creating challenges for modern applications requiring smaller catalysts. In this review, we surveyed the advantages of miniature enzymes, including enhanced expressivity, folding efficiency, thermostability, and resistance to proteolysis. We described the applications of miniature enzymes as industrial catalysts, therapeutic agents, and diagnostic elements. We highlighted strategies such as genome mining, rational design, random deletion, and de novo design for achieving enzyme miniaturization, integrating both computational and experimental techniques. By investigating these approaches, we aim to provide a framework for advancing enzyme engineering, emphasizing the unique potential of miniature enzymes to revolutionize biocatalysis, gene therapy, and biosensing technologies.

摘要

酶的小型化提供了一种变革性方法,以克服传统酶在工业、治疗和诊断应用中因体积庞大而带来的限制。然而,针对活性对酶进行的进化优化并没有天然地倾向于紧凑结构,这给需要更小催化剂的现代应用带来了挑战。在本综述中,我们调查了小型化酶的优势,包括增强的表达性、折叠效率、热稳定性和抗蛋白酶解能力。我们描述了小型化酶作为工业催化剂、治疗剂和诊断元件的应用。我们强调了实现酶小型化的策略,如基因组挖掘、理性设计、随机删除和从头设计,整合了计算和实验技术。通过研究这些方法,我们旨在提供一个推进酶工程的框架,强调小型化酶在彻底改变生物催化、基因治疗和生物传感技术方面的独特潜力。

相似文献

1
Enzyme miniaturization: Revolutionizing future biocatalysts.
Biotechnol Adv. 2025 Sep;82:108598. doi: 10.1016/j.biotechadv.2025.108598. Epub 2025 May 10.
3
Computer-Aided Techniques in the Engineering of Enzyme Binding Pockets: New Perspectives and Frontiers.
J Agric Food Chem. 2025 Aug 20;73(33):20600-20615. doi: 10.1021/acs.jafc.5c05979. Epub 2025 Aug 11.
5
Modification and applications of glucose oxidase: optimization strategies and high-throughput screening technologies.
World J Microbiol Biotechnol. 2025 Jul 12;41(7):266. doi: 10.1007/s11274-025-04475-8.
7
Advancing Biocatalysis Education: Sustaining the Future of Industrial Biotechnology.
JACS Au. 2025 Jul 16;5(7):2932-2938. doi: 10.1021/jacsau.5c00369. eCollection 2025 Jul 28.
8
Revolutionizing keratinase science: Biocatalytic advances, sustainable innovation, and industrial perspectives.
Biotechnol Adv. 2025 Oct;83:108657. doi: 10.1016/j.biotechadv.2025.108657. Epub 2025 Jul 21.
9
Radical-relay C(sp)-H azidation catalyzed by an engineered nonheme iron enzyme.
Methods Enzymol. 2024;703:195-213. doi: 10.1016/bs.mie.2024.07.003. Epub 2024 Jul 23.

本文引用的文献

1
Replicating PET Hydrolytic Activity by Positioning Active Sites with Smaller Synthetic Protein Scaffolds.
Adv Sci (Weinh). 2025 May;12(18):e2500859. doi: 10.1002/advs.202500859. Epub 2025 Mar 16.
2
Enhancing the expression of terminal deoxynucleotidyl transferases by N-terminal truncation.
Biotechnol J. 2024 Sep;19(9):e2400226. doi: 10.1002/biot.202400226.
3
Structure-guided discovery of ancestral CRISPR-Cas13 ribonucleases.
Science. 2024 Aug 2;385(6708):538-543. doi: 10.1126/science.adq0553. Epub 2024 Jul 18.
4
Engineering miniature CRISPR-Cas Un1Cas12f1 for efficient base editing.
Mol Ther Nucleic Acids. 2024 Apr 25;35(2):102201. doi: 10.1016/j.omtn.2024.102201. eCollection 2024 Jun 11.
5
Hypercompact TnpB and truncated TnpB systems enable efficient genome editing in vitro and in vivo.
Cell Discov. 2024 Mar 19;10(1):31. doi: 10.1038/s41421-023-00645-w.
6
Structural engineering and truncation of α-amylase from the hyperthermophilic archaeon Methanocaldococcus jannaschii.
Int J Biol Macromol. 2024 Jan;256(Pt 1):128387. doi: 10.1016/j.ijbiomac.2023.128387. Epub 2023 Nov 23.
7
Clustering predicted structures at the scale of the known protein universe.
Nature. 2023 Oct;622(7983):637-645. doi: 10.1038/s41586-023-06510-w. Epub 2023 Sep 13.
8
A strategy for Cas13 miniaturization based on the structure and AlphaFold.
Nat Commun. 2023 Sep 8;14(1):5545. doi: 10.1038/s41467-023-41320-8.
9
Immobilized nanoparticles-mediated enzyme therapy; promising way into clinical development.
Discov Nano. 2023 Mar 23;18(1):55. doi: 10.1186/s11671-023-03823-7.
10
Intracellular delivery of therapeutic proteins. New advancements and future directions.
Front Bioeng Biotechnol. 2023 May 25;11:1211798. doi: 10.3389/fbioe.2023.1211798. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验