Suppr超能文献

相似文献

1
Path selection in the growth of rivers.
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14132-7. doi: 10.1073/pnas.1413883112. Epub 2015 Nov 2.
2
Bifurcation dynamics of natural drainage networks.
Philos Trans A Math Phys Eng Sci. 2013 Nov 4;371(2004):20120365. doi: 10.1098/rsta.2012.0365. Print 2013.
3
Bifurcation dynamics of natural drainage networks.
Philos Trans A Math Phys Eng Sci. 2013 Dec 13;371(2004):20120365.
4
Laplacian networks: Growth, local symmetry, and shape optimization.
Phys Rev E. 2017 Mar;95(3-1):033113. doi: 10.1103/PhysRevE.95.033113. Epub 2017 Mar 24.
5
Through history to growth dynamics: deciphering the evolution of spatial networks.
Sci Rep. 2022 Nov 27;12(1):20407. doi: 10.1038/s41598-022-24656-x.
6
Geometry of river networks. III. Characterization of component connectivity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jan;63(1 Pt 2):016117. doi: 10.1103/PhysRevE.63.016117. Epub 2000 Dec 27.
7
Symmetric rearrangement of groundwater-fed streams.
Proc Math Phys Eng Sci. 2017 Nov;473(2207):20170539. doi: 10.1098/rspa.2017.0539. Epub 2017 Nov 8.
8
Evolution and selection of river networks: statics, dynamics, and complexity.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2417-24. doi: 10.1073/pnas.1322700111. Epub 2014 Feb 3.
9
Estimating aquifer channel recharge using optical data interpretation.
Ground Water. 2012 Jan-Feb;50(1):68-76. doi: 10.1111/j.1745-6584.2011.00815.x. Epub 2011 Mar 24.

引用本文的文献

1
Breakthrough-induced loop formation in evolving transport networks.
Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2401200121. doi: 10.1073/pnas.2401200121. Epub 2024 Jul 10.
3
Through history to growth dynamics: deciphering the evolution of spatial networks.
Sci Rep. 2022 Nov 27;12(1):20407. doi: 10.1038/s41598-022-24656-x.
4
Phase Separation of an Evaporating Ternary Solution in a Hele-Shaw Cell.
Langmuir. 2021 Sep 7;37(35):10450-10460. doi: 10.1021/acs.langmuir.1c01274. Epub 2021 Aug 23.
5
Geodesic Loewner paths with varying boundary conditions.
Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200466. doi: 10.1098/rspa.2020.0466. Epub 2020 Oct 7.
6
Symmetric rearrangement of groundwater-fed streams.
Proc Math Phys Eng Sci. 2017 Nov;473(2207):20170539. doi: 10.1098/rspa.2017.0539. Epub 2017 Nov 8.
7
Universal nanodroplet branches from confining the Ouzo effect.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10332-10337. doi: 10.1073/pnas.1704727114. Epub 2017 Sep 11.
8
Exact solution for the Poisson field in a semi-infinite strip.
Proc Math Phys Eng Sci. 2017 Apr;473(2200):20160908. doi: 10.1098/rspa.2016.0908. Epub 2017 Apr 19.

本文引用的文献

1
Bifurcation dynamics of natural drainage networks.
Philos Trans A Math Phys Eng Sci. 2013 Nov 4;371(2004):20120365. doi: 10.1098/rsta.2012.0365. Print 2013.
2
Ramification of stream networks.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20832-6. doi: 10.1073/pnas.1215218109. Epub 2012 Dec 6.
3
Dynamics of cracks in torn thin sheets.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):066103. doi: 10.1103/PhysRevE.81.066103. Epub 2010 Jun 3.
4
Drying patterns: Sensitivity to residual stresses.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 2):046109. doi: 10.1103/PhysRevE.79.046109. Epub 2009 Apr 27.
5
Fingered growth in channel geometry: a Loewner-equation approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041602. doi: 10.1103/PhysRevE.77.041602. Epub 2008 Apr 14.
6
Hierarchical crack pattern as formed by successive domain divisions. II. From disordered to deterministic behavior.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046215. doi: 10.1103/PhysRevE.71.046215. Epub 2005 Apr 28.
7
Universality Classes of Optimal Channel Networks.
Science. 1996 May 17;272(5264):984-6. doi: 10.1126/science.272.5264.984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验