Suppr超能文献

具有变化边界条件的测地线洛厄纳路径。

Geodesic Loewner paths with varying boundary conditions.

作者信息

McDonald Robb

机构信息

Department of Mathematics, University College London, London WC1E 6BT, UK.

出版信息

Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200466. doi: 10.1098/rspa.2020.0466. Epub 2020 Oct 7.

Abstract

Equations of the Loewner class subject to non-constant boundary conditions along the real axis are formulated and solved giving the geodesic paths of slits growing in the upper half complex plane. The problem is motivated by Laplacian growth in which the slits represent thin fingers growing in a diffusion field. A single finger follows a curved path determined by the forcing function appearing in Loewner's equation. This function is found by solving an ordinary differential equation whose terms depend on curvature properties of the streamlines of the diffusive field in the conformally mapped 'mathematical' plane. The effect of boundary conditions specifying either piecewise constant values of the field variable along the real axis, or a dipole placed on the real axis, reveal a range of behaviours for the growing slit. These include regions along the real axis from which no slit growth is possible, regions where paths grow to infinity, or regions where paths curve back toward the real axis terminating in finite time. Symmetric pairs of paths subject to the piecewise constant boundary condition along the real axis are also computed, demonstrating that paths which grow to infinity evolve asymptotically toward an angle of bifurcation of /5.

摘要

建立并求解了在实轴上具有非恒定边界条件的Loewner类方程,给出了在上半复平面中生长的狭缝的测地线。该问题由拉普拉斯生长问题引发,其中狭缝代表在扩散场中生长的细指状物。单个指状物遵循由Loewner方程中出现的强迫函数所确定的弯曲路径。该函数通过求解一个常微分方程得到,其各项取决于共形映射的“数学”平面中扩散场流线的曲率特性。指定沿实轴上场变量的分段常数值或置于实轴上的偶极子的边界条件的影响,揭示了生长狭缝的一系列行为。这些行为包括实轴上不可能有狭缝生长的区域、路径生长到无穷远的区域,或路径在有限时间内弯曲回实轴并终止的区域。还计算了沿实轴受分段恒定边界条件约束的对称路径对,表明生长到无穷远的路径渐近地朝着(π/5)的分岔角演化。

相似文献

1
Geodesic Loewner paths with varying boundary conditions.具有变化边界条件的测地线洛厄纳路径。
Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200466. doi: 10.1098/rspa.2020.0466. Epub 2020 Oct 7.
3
Fingering in a channel and tripolar Loewner evolutions.通道中的指法与三极Loewner演化
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051602. doi: 10.1103/PhysRevE.84.051602. Epub 2011 Nov 7.
4
Interface growth in two dimensions: a Loewner-equation approach.二维界面生长:一种基于洛厄纳方程的方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 1):031601. doi: 10.1103/PhysRevE.82.031601. Epub 2010 Sep 1.
5
Laplacian networks: Growth, local symmetry, and shape optimization.拉普拉斯网络:生长、局部对称性与形状优化。
Phys Rev E. 2017 Mar;95(3-1):033113. doi: 10.1103/PhysRevE.95.033113. Epub 2017 Mar 24.
6
Left passage probability of Schramm-Loewner Evolution.施拉姆-洛厄纳演化的左通道概率。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062105. doi: 10.1103/PhysRevE.87.062105. Epub 2013 Jun 4.
8
Convective Sedimentation of Colloidal Particles in a Bowl.碗中胶体颗粒的对流沉降
J Colloid Interface Sci. 1999 Aug 1;216(1):193-195. doi: 10.1006/jcis.1999.6309.
10
Fingered growth in channel geometry: a Loewner-equation approach.通道几何形状中的指状生长:一种基于洛厄纳方程的方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041602. doi: 10.1103/PhysRevE.77.041602. Epub 2008 Apr 14.

本文引用的文献

2
Symmetric rearrangement of groundwater-fed streams.由地下水补给的溪流的对称重排。
Proc Math Phys Eng Sci. 2017 Nov;473(2207):20170539. doi: 10.1098/rspa.2017.0539. Epub 2017 Nov 8.
3
Laplacian networks: Growth, local symmetry, and shape optimization.拉普拉斯网络:生长、局部对称性与形状优化。
Phys Rev E. 2017 Mar;95(3-1):033113. doi: 10.1103/PhysRevE.95.033113. Epub 2017 Mar 24.
4
Path selection in the growth of rivers.河流发育中的路径选择
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14132-7. doi: 10.1073/pnas.1413883112. Epub 2015 Nov 2.
5
Branching instability in expanding bacterial colonies.扩展细菌菌落中的分支不稳定性。
J R Soc Interface. 2015 Mar 6;12(104):20141290. doi: 10.1098/rsif.2014.1290.
6
Bifurcation dynamics of natural drainage networks.自然排水网络的分岔动力学。
Philos Trans A Math Phys Eng Sci. 2013 Nov 4;371(2004):20120365. doi: 10.1098/rsta.2012.0365. Print 2013.
7
Ramification of stream networks.水系分支。
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20832-6. doi: 10.1073/pnas.1215218109. Epub 2012 Dec 6.
8
Fingering in a channel and tripolar Loewner evolutions.通道中的指法与三极Loewner演化
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051602. doi: 10.1103/PhysRevE.84.051602. Epub 2011 Nov 7.
9
Interface growth in two dimensions: a Loewner-equation approach.二维界面生长:一种基于洛厄纳方程的方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 1):031601. doi: 10.1103/PhysRevE.82.031601. Epub 2010 Sep 1.
10
Fingered growth in channel geometry: a Loewner-equation approach.通道几何形状中的指状生长:一种基于洛厄纳方程的方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041602. doi: 10.1103/PhysRevE.77.041602. Epub 2008 Apr 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验