Suppr超能文献

基于独立成分分析的伪迹去除可减少多中心静息态功能磁共振成像中的扫描部位差异。

ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI.

作者信息

Feis Rogier A, Smith Stephen M, Filippini Nicola, Douaud Gwenaëlle, Dopper Elise G P, Heise Verena, Trachtenberg Aaron J, van Swieten John C, van Buchem Mark A, Rombouts Serge A R B, Mackay Clare E

机构信息

Department of Radiology, Leiden University Medical Centre Leiden, Netherlands ; FMRIB, Nuffield Department of Clinical Neurosciences, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford Oxford, UK.

FMRIB, Nuffield Department of Clinical Neurosciences, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford Oxford, UK.

出版信息

Front Neurosci. 2015 Oct 27;9:395. doi: 10.3389/fnins.2015.00395. eCollection 2015.

Abstract

Resting-state fMRI (R-fMRI) has shown considerable promise in providing potential biomarkers for diagnosis, prognosis and drug response across a range of diseases. Incorporating R-fMRI into multi-center studies is becoming increasingly popular, imposing technical challenges on data acquisition and analysis, as fMRI data is particularly sensitive to structured noise resulting from hardware, software, and environmental differences. Here, we investigated whether a novel clean up tool for structured noise was capable of reducing center-related R-fMRI differences between healthy subjects. We analyzed three Tesla R-fMRI data from 72 subjects, half of whom were scanned with eyes closed in a Philips Achieva system in The Netherlands, and half of whom were scanned with eyes open in a Siemens Trio system in the UK. After pre-statistical processing and individual Independent Component Analysis (ICA), FMRIB's ICA-based X-noiseifier (FIX) was used to remove noise components from the data. GICA and dual regression were run and non-parametric statistics were used to compare spatial maps between groups before and after applying FIX. Large significant differences were found in all resting-state networks between study sites before using FIX, most of which were reduced to non-significant after applying FIX. The between-center difference in the medial/primary visual network, presumably reflecting a between-center difference in protocol, remained statistically significant. FIX helps facilitate multi-center R-fMRI research by diminishing structured noise from R-fMRI data. In doing so, it improves combination of existing data from different centers in new settings and comparison of rare diseases and risk genes for which adequate sample size remains a challenge.

摘要

静息态功能磁共振成像(R-fMRI)在为一系列疾病的诊断、预后和药物反应提供潜在生物标志物方面显示出了巨大的前景。将R-fMRI纳入多中心研究越来越普遍,这给数据采集和分析带来了技术挑战,因为功能磁共振成像数据对硬件、软件和环境差异产生的结构化噪声特别敏感。在这里,我们研究了一种用于结构化噪声的新型清理工具是否能够减少健康受试者之间与中心相关的R-fMRI差异。我们分析了72名受试者的3特斯拉R-fMRI数据,其中一半在荷兰的飞利浦Achieva系统中闭眼扫描,另一半在英国的西门子Trio系统中睁眼扫描。在进行统计前处理和个体独立成分分析(ICA)后,使用FMRIB基于ICA的X-噪声消除器(FIX)从数据中去除噪声成分。运行组独立成分分析(GICA)和双重回归,并使用非参数统计来比较应用FIX前后两组之间的空间图谱。在使用FIX之前,研究地点之间的所有静息态网络中都发现了显著差异,应用FIX后,其中大部分差异降至不显著。内侧/初级视觉网络中的中心间差异可能反映了协议中的中心间差异,在统计上仍然显著。FIX通过减少R-fMRI数据中的结构化噪声,有助于促进多中心R-fMRI研究。这样做可以改善新环境中来自不同中心的现有数据的合并,以及对罕见疾病和风险基因的比较,而对于这些疾病和基因,足够的样本量仍然是一个挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a049/4621866/5ce8bbdadd1f/fnins-09-00395-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验