图像调和:去除批次效应的统计和深度学习方法综述,以及有效调和的评价指标。

Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization.

机构信息

Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States.

Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States.

出版信息

Neuroimage. 2023 Jul 1;274:120125. doi: 10.1016/j.neuroimage.2023.120125. Epub 2023 Apr 20.

Abstract

Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.

摘要

越来越多的人将来自多个批次(例如,地点、扫描仪、数据集等)的磁共振成像和计算机断层扫描与复杂的下游分析结合使用,以深入了解人类大脑。然而,由于与批次相关的技术差异而导致的显著混杂因素(称为批次效应)存在于这些数据中;直接将下游分析应用于数据可能会导致有偏的结果。图像调和方法旨在消除这些批次效应,并提高下游结果的可推广性和可重复性。在这篇综述中,我们描述并分类了目前在统计和深度学习调和方法中的应用。我们还描述了目前用于评估调和方法的评估指标,并提供了一个标准化框架,用于评估新提出的方法,以实现有效的调和和生物信息的保留。最后,我们向终端用户提供建议,以提倡更有效地使用当前的方法,并向方法学家提供指导,以指导未来的努力并加速该领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bce/10257347/e62471c8b789/nihms-1900801-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索