Subramanian Sowmyalakshmi, Smith Donald L
Department of Plant Sciences, Macdonald Campus/McGill University, Sainte-Anne-de-Bellevue QC, Canada.
Front Plant Sci. 2015 Oct 30;6:909. doi: 10.3389/fpls.2015.00909. eCollection 2015.
Bacteria produce and excrete a versatile and dynamic suit of compounds to defend against microbial competitors and mediate local population dynamics. These include a wide range of broad-spectrum non-ribosomally synthesized antibiotics, lytic enzymes, metabolic by-products, proteinaceous exotoxins, and ribosomally produced antimicrobial peptides (bacteriocins). Most bacteria produce at least one bacteriocin. Bacteriocins are of interest in the food industry as natural preservatives and in the probiotics industry, leading to extensive studies on lactic acid bacteria (colicin produced by Escherichia coli is a model bacteriocin). Recent studies have projected use of bacteriocins in veterinary medicine and in agriculture, as biostimulants of plant growth and development and as biocontrol agents. For example, bacteriocins such as Cerein 8A, Bac-GM17, putidacin, Bac 14B, amylocyclicin have been studied for their mechanisms of anti-microbial activity. Bac IH7 promotes tomato and musk melon plant growth. Thuricin 17 (Th17) is the only bacteriocin studied extensively for plant growth promotion, including at the molecular level. Th17 functions as a bacterial signal compound, promoting plant growth in legumes and non-legumes. In Arabidopsis thaliana and Glycine max Th17 increased phytohormones IAA and SA at 24 h post treatment. At the proteome level Th17 treatment of 3-week-old A. thaliana rosettes led to >2-fold changes in activation of the carbon and energy metabolism pathway proteins, 24 h post treatment. At 250 mM NaCl stress, the control plants under osmotic-shock shut down most of carbon-metabolism and activated energy-metabolism and antioxidant pathways. Th17 treated plants, at 250 mM NaCl, retained meaningful levels of the light harvesting complex, photosystems I and II proteins and energy and antioxidant pathways were activated, so that rosettes could better withstand the salt stress. In Glycine max, Th17 helped seeds germinate in the presence of NaCl stress, and was most effective at 100 mM NaCl. The 48 h post germination proteome suggested efficient and speedier partitioning of storage proteins, activation of carbon, nitrogen and energy metabolisms in Th17 treated seeds both under optimal and 100 mM NaCl. This review focuses on the bacteriocins produced by plant-rhizosphere colonizers and plant-pathogenic bacteria, that might have uses in agriculture, veterinary, and human medicine.
细菌产生并分泌一套多样且动态的化合物,以抵御微生物竞争者并调节局部种群动态。这些化合物包括多种广谱非核糖体合成抗生素、裂解酶、代谢副产物、蛋白质类外毒素以及核糖体产生的抗菌肽(细菌素)。大多数细菌至少会产生一种细菌素。细菌素在食品工业中作为天然防腐剂以及在益生菌工业中受到关注,这引发了对乳酸菌的广泛研究(大肠杆菌产生的大肠杆菌素就是一种典型的细菌素)。最近的研究预计细菌素可用于兽医学和农业,作为植物生长发育的生物刺激剂以及生物防治剂。例如,已经对诸如Cerein 8A、Bac - GM17、恶臭假单胞菌素、Bac 14B、淀粉环菌素等细菌素的抗菌活性机制进行了研究。Bac IH7能促进番茄和甜瓜植株生长。苏云金芽孢杆菌素17(Th17)是唯一一种在促进植物生长方面,包括在分子水平上进行了广泛研究的细菌素。Th17作为一种细菌信号化合物,可促进豆类和非豆类植物的生长。在处理24小时后,拟南芥和大豆中的Th17增加了植物激素吲哚 - 3 - 乙酸(IAA)和水杨酸(SA)的含量。在蛋白质组水平上,用Th17处理3周龄的拟南芥莲座叶,处理后24小时,碳和能量代谢途径蛋白的激活变化超过2倍。在250 mM氯化钠胁迫下,遭受渗透冲击的对照植物关闭了大部分碳代谢,激活了能量代谢和抗氧化途径。用Th17处理的植物在250 mM氯化钠条件下,保留了有意义水平的光捕获复合体、光系统I和II蛋白,并且能量和抗氧化途径被激活,从而使莲座叶能够更好地耐受盐胁迫。在大豆中,Th17有助于种子在氯化钠胁迫下萌发,在100 mM氯化钠时效果最佳。萌发后48小时的蛋白质组分析表明,在最佳条件和100 mM氯化钠条件下,用Th17处理的种子中储存蛋白的分配高效且迅速,碳、氮和能量代谢被激活。本综述重点关注植物根际定殖菌和植物病原菌产生的细菌素,它们可能在农业、兽医学和人类医学中具有应用价值。