Department of Chemistry, ‡Department of Electrical Engineering, and §Princeton Institute for the Science and Technology of Materials, Princeton University , Princeton, New Jersey 08544, United States.
Department of Materials Science & Engineering, University of Texas at Dallas , Richardson, Texas 75080, United States.
J Am Chem Soc. 2015 Dec 2;137(47):14842-5. doi: 10.1021/jacs.5b09750. Epub 2015 Nov 20.
The classical SiO2/Si interface, which is the basis of integrated circuit technology, is prepared by thermal oxidation followed by high temperature (>800 °C) annealing. Here we show that an interface synthesized between titanium dioxide (TiO2) and hydrogen-terminated silicon (H:Si) is a highly efficient solar cell heterojunction that can be prepared under typical laboratory conditions from a simple organometallic precursor. A thin film of TiO2 is grown on the surface of H:Si through a sequence of vapor deposition of titanium tetra(tert-butoxide) (1) and heating to 100 °C. The TiO2 film serves as a hole-blocking layer in a TiO2/Si heterojunction solar cell. Further heating to 250 °C and then treating with a dilute solution of 1 yields a hole surface recombination velocity of 16 cm/s, which is comparable to the best values reported for the classical SiO2/Si interface. The outstanding performance of this heterojunction is attributed to Si-O-Ti bonding at the TiO2/Si interface, which was probed by angle-resolved X-ray photoelectron spectroscopy. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) showed that Si-H bonds remain even after annealing at 250 °C. The ease and scalability of the synthetic route employed and the quality of the interface it provides suggest that this surface chemistry has the potential to enable fundamentally new, efficient silicon solar cell devices.
经典的 SiO2/Si 界面是集成电路技术的基础,通过热氧化和高温(>800°C)退火制备。在这里,我们展示了一种在二氧化钛(TiO2)和氢化硅(H:Si)之间合成的界面,它是一种高效的太阳能电池异质结,可以通过简单的有机金属前体在典型的实验室条件下制备。通过钛四(叔丁氧基)(1)的气相沉积和加热至 100°C,在 H:Si 表面生长一层 TiO2 薄膜。TiO2 薄膜在 TiO2/Si 异质结太阳能电池中充当空穴阻挡层。进一步加热至 250°C,然后用稀溶液 1 处理,得到的空穴表面复合速率为 16 cm/s,与经典 SiO2/Si 界面报道的最佳值相当。这种异质结的优异性能归因于 TiO2/Si 界面处的 Si-O-Ti 键合,这通过角度分辨 X 射线光电子能谱进行了探测。衰减全反射傅里叶变换红外光谱(ATR-FTIR)表明,即使在 250°C 退火后,Si-H 键仍保持存在。所采用的合成路线的简便性和可扩展性以及它提供的界面质量表明,这种表面化学具有实现全新高效硅太阳能电池器件的潜力。