Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.
Tyndall National Institute, University College Cork , Cork, Ireland.
ACS Appl Mater Interfaces. 2016 May 25;8(20):13140-9. doi: 10.1021/acsami.6b03029. Epub 2016 May 16.
Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (<1.3 nm) SiO2 layers, allowing fabrication of water splitting photoanodes with hole conductances near the maximum achievable with the given catalyst and Si substrate. Three methods for controlling the SiO2 interlayer thickness on the Si(100) surface for ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes.
由原子层沉积 (ALD) TiO2 保护的硅光电阳极有望成为水分解装置的组成部分,这些装置可能实现太阳能燃料和化学品的大规模生产。为了制造具有良好填充因子的高效器件,最小化氧化物腐蚀保护层的电阻至关重要。最近的文献报道表明,夹在保护性 ALD-TiO2 和 Si 阳极之间的界面 SiO2 层充当隧道氧化物,限制了来自光吸收衬底的空穴到表面析氧催化剂的传导。在此,我们报告了通过形成稳定的超薄 (<1.3nm) SiO2 层来显著降低双层电阻,从而可以制造具有与给定催化剂和 Si 衬底可实现的最大空穴电导率相近的水分解光电阳极。我们采用了三种方法来控制 ALD-TiO2 保护的阳极上 Si(100) 表面的 SiO2 层的厚度:(1) TiO2 直接沉积在 HF 刻蚀的 Si(100)表面上,(2) TiO2 沉积在 HF 刻蚀的 Si(100)表面上的 SiO2 原子层沉积之后,以及 (3) 在 TiO2 沉积后使用 Ti 覆盖层进行氧清除以分解 SiO2 层。这些方法中的每一种都提供了一种逐渐优越的方法,可以可靠地减薄界面 SiO2 层,从而制造高效稳定的水氧化硅阳极。