Suppr超能文献

报告具有统计学意义的麻醉学干预措施的系统评价:效能、精度和一类错误保护方面的问题。

Systematic Reviews of Anesthesiologic Interventions Reported as Statistically Significant: Problems with Power, Precision, and Type 1 Error Protection.

作者信息

Imberger Georgina, Gluud Christian, Boylan John, Wetterslev Jørn

机构信息

From the *Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen, Denmark; †Department of Anesthesia & Perioperative Medicine, Monash University, Melbourne, Australia; and ‡ Department of Anaesthesia, St. Vincent's Hospital, Dublin, Ireland.

出版信息

Anesth Analg. 2015 Dec;121(6):1611-22. doi: 10.1213/ANE.0000000000000892.

Abstract

BACKGROUND

The GRADE Working Group assessment of the quality of evidence is being used increasingly to inform clinical decisions and guidelines. The assessment involves explicit consideration of all sources of uncertainty. One of these sources is imprecision or random error. Many published meta-analyses are underpowered and likely to be updated in the future. When data are sparse and there are repeated updates, the risk of random error is increased. Trial Sequential Analysis (TSA) is one of several methodologies that estimates this increased risk (and decreased precision) in meta-analyses. With nominally statistically significant meta-analyses of anesthesiologic interventions, we used TSA to estimate power and imprecision in the context of sparse data and repeated updates.

METHODS

We conducted a search to identify all systematic reviews with meta-analyses that investigated an intervention that may be implemented by an anesthesiologist during the perioperative period. We randomly selected 50 meta-analyses that reported a statistically significant dichotomous outcome in their abstract. We applied TSA to these meta-analyses by using 2 main TSA approaches: relative risk reduction 20% and relative risk reduction consistent with the conventional 95% confidence limit closest to null. We calculated the power achieved by each included meta-analysis, by using each TSA approach, and we calculated the proportion that maintained statistical significance when allowing for sparse data and repeated updates.

RESULTS

From 11,870 titles, we found 682 systematic reviews that investigated anesthesiologic interventions. In the 50 sampled meta-analyses, the median number of trials included was 8 (interquartile range [IQR], 5-14), the median number of participants was 964 (IQR, 523-1736), and the median number of participants with the outcome was 202 (IQR, 96-443). By using both of our main TSA approaches, only 12% (95% CI, 5%-25%) of the meta-analyses had power ≥ 80%, and only 32% (95% CI, 20%-47%) of the meta-analyses preserved the risk of type 1 error <5%.

CONCLUSIONS

Most nominally statistically significant meta-analyses of anesthesiologic interventions are underpowered, and many do not maintain their risk of type 1 error <5% if TSA monitoring boundaries are applied. Consideration of the effect of sparse data and repeated updates is needed when assessing the imprecision of meta-analyses of anesthesiologic interventions.

摘要

背景

推荐分级的评估、制定和评价(GRADE)工作组对证据质量的评估越来越多地用于为临床决策和指南提供依据。该评估明确考虑了所有不确定性来源。其中一个来源是不精确性或随机误差。许多已发表的荟萃分析效能不足,且未来可能会更新。当数据稀少且有多次更新时,随机误差的风险会增加。试验序贯分析(TSA)是估计荟萃分析中这种增加的风险(以及降低的精确性)的几种方法之一。对于麻醉学干预的名义上具有统计学显著性的荟萃分析,我们使用TSA来估计稀疏数据和重复更新情况下的效能和不精确性。

方法

我们进行了一项检索,以识别所有包含荟萃分析的系统评价,这些系统评价调查了麻醉医生在围手术期可能实施的干预措施。我们随机选择了50项在摘要中报告了具有统计学显著性的二分结局的荟萃分析。我们通过使用两种主要的TSA方法将TSA应用于这些荟萃分析:相对危险度降低20%和与最接近无效值的传统95%置信区间一致的相对危险度降低。我们使用每种TSA方法计算每个纳入的荟萃分析所达到的效能,并计算在考虑稀疏数据和重复更新时保持统计学显著性的比例。

结果

从11870个标题中,我们发现了682项调查麻醉学干预措施的系统评价。在50项抽样的荟萃分析中,纳入试验的中位数为8项(四分位间距[IQR],5 - 14),参与者的中位数为964名(IQR,523 - 1736),出现结局的参与者的中位数为202名(IQR,96 - 443)。通过使用我们的两种主要TSA方法,只有12%(95%CI,5% - 25%)的荟萃分析效能≥80%,只有32%(95%CI,20% - 47%)的荟萃分析将I类错误风险保持在<5%。

结论

大多数名义上具有统计学显著性的麻醉学干预荟萃分析效能不足,如果应用TSA监测界限,许多分析不能将其I类错误风险保持在<5%。在评估麻醉学干预荟萃分析的不精确性时,需要考虑稀疏数据和重复更新的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验