Rudzinski Joseph F, Noid William G
Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.
J Chem Theory Comput. 2015 Mar 10;11(3):1278-91. doi: 10.1021/ct5009922. Epub 2015 Feb 25.
This work investigates the capability of bottom-up methods for parametrizing minimal coarse-grained (CG) models of disordered and helical peptides. We consider four high-resolution peptide ensembles that demonstrate varying degrees of complexity. For each high-resolution ensemble, we parametrize a CG model via the multiscale coarse-graining (MS-CG) method, which employs a generalized Yvon-Born-Green (g-YBG) relation to determine potentials directly (i.e., without iteration) from the high-resolution ensemble. The MS-CG method accurately describes high-resolution models that fluctuate about a single conformation. However, given the minimal resolution and simple molecular mechanics potential, the MS-CG method provides a less accurate description for a high-resolution peptide model that samples a disordered ensemble with multiple distinct conformations. We employ an iterative g-YBG method to develop a CG model that more accurately describes the relevant distribution functions and free energy surfaces for this disordered ensemble. Nevertheless, this more accurate model does not reproduce the cooperative helix-coil transition that is sampled by the high resolution model. By comparing the different models, we demonstrate that the errors in the MS-CG model primarily stem from the lack of cooperative interactions afforded by the minimal representation and molecular mechanics potential. This work demonstrates the potential of the MS-CG method for accurately modeling complex biomolecular structures, but also highlights the importance of more complex potentials for modeling cooperative transitions with a minimal CG representation.
本研究探讨了自下而上方法对无序和螺旋肽的最小粗粒度(CG)模型进行参数化的能力。我们考虑了四个高分辨率肽集合,它们展示了不同程度的复杂性。对于每个高分辨率集合,我们通过多尺度粗粒化(MS-CG)方法对CG模型进行参数化,该方法采用广义伊冯 - 博恩 - 格林(g-YBG)关系直接(即无需迭代)从高分辨率集合确定势能。MS-CG方法准确地描述了围绕单一构象波动的高分辨率模型。然而,鉴于其最小分辨率和简单的分子力学势能,MS-CG方法对于采样具有多个不同构象的无序集合的高分辨率肽模型提供的描述不太准确。我们采用迭代g-YBG方法来开发一个CG模型,该模型能更准确地描述这个无序集合的相关分布函数和自由能表面。尽管如此,这个更准确的模型并不能重现高分辨率模型所采样的协同螺旋 - 线圈转变。通过比较不同的模型,我们证明MS-CG模型中的误差主要源于最小表示和分子力学势能所缺乏的协同相互作用。这项工作展示了MS-CG方法对复杂生物分子结构进行准确建模的潜力,但也强调了使用更复杂的势能以最小的CG表示对协同转变进行建模的重要性。