University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States.
J Chem Theory Comput. 2020 Apr 14;16(4):2258-2273. doi: 10.1021/acs.jctc.9b01176. Epub 2020 Mar 27.
Prompted by recent reports of large errors in noncovalent interaction (NI) energies obtained from many-body perturbation theory (MBPT), we compare the performance of second-order Mo̷ller-Plesset MBPT (MP2), spin-scaled MP2, dispersion-corrected semilocal density functional approximations (DFAs), and post-Kohn-Sham random phase approximation (RPA) for predicting binding energies of supramolecular complexes contained in the S66, L7, and S30L benchmarks. All binding energies are extrapolated to the basis set limit, corrected for basis set superposition errors, and compared to reference results of the domain-based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) or better quality. Our results confirm that MP2 severely overestimates binding energies of large complexes, producing relative errors of over 100% for several benchmark compounds. RPA relative errors consistently range between 5 and 10%, significantly less than reported previously using smaller basis sets, whereas spin-scaled MP2 methods show limitations similar to MP2, albeit less pronounced, and empirically dispersion-corrected DFAs perform almost as well as RPA. Regression analysis reveals a systematic increase of relative MP2 binding energy errors with the system size at a rate of approximately 0.1% per valence electron, whereas the RPA and dispersion-corrected DFA relative errors are virtually independent of the system size. These observations are corroborated by a comparison of computed rotational constants of organic molecules to gas-phase spectroscopy data contained in the ROT34 benchmark. To analyze these results, an asymptotic adiabatic connection symmetry-adapted perturbation theory (AC-SAPT) is developed, which uses monomers at full coupling, whose ground-state density is constrained to the ground-state density of the complex. Using the fluctuation-dissipation theorem, we obtain a nonperturbative "screened second-order" expression for the dispersion energy in terms of monomer quantities, which is exact for non-overlapping subsystems and free of induction terms; a first-order RPA-like approximation to the Hartree, exchange, and correlation kernel recovers the macroscopic Lifshitz limit. The AC-SAPT expansion of the interaction energy is obtained from Taylor expansion of the coupling strength integrand. Explicit expressions for the convergence radius of the AC-SAPT series are derived within RPA and MBPT and numerically evaluated. While the AC-SAPT expansion is always convergent for nondegenerate monomers when RPA is used, it is found to spuriously diverge for second-order MBPT, except for the smallest and least polarizable monomers. The divergence of the AC-SAPT series for MBPT is numerically confirmed within RPA; prior numerical results on the convergence of the SAPT expansion for MBPT methods are revisited and support this conclusion once sufficiently high orders are included. The cause of the failure of MBPT methods for NIs of large systems is missing or incomplete "electrodynamic" screening of the Coulomb interaction due to induced particle-hole pairs between electrons in different monomers, leaving the effective interaction too strong for AC-SAPT to converge. Hence, MBPT cannot be considered reliable for quantitative predictions of NIs, even in moderately polarizable molecules with a few tens of atoms. The failure to accurately account for electrodynamic polarization makes MBPT qualitatively unsuitable for applications such as NIs of nanostructures, macromolecules, and soft materials; more robust nonperturbative approaches such as RPA or coupled cluster methods should be used instead whenever possible.
由于最近有报道称,许多体微扰理论(MBPT)得到的非共价相互作用(NI)能量存在很大误差,我们比较了二阶莫尔-普莱塞特微扰理论(MP2)、自旋标度 MP2、色散校正半局部密度泛函近似(DFA)和后库恩-肖随机相位近似(RPA)在预测超分子复合物结合能方面的性能,这些复合物包含在 S66、L7 和 S30L 基准中。所有结合能都被外推到基组极限,校正基组叠加误差,并与域基局部对自然轨道耦合簇(DLPNO-CCSD(T))或更高质量的参考结果进行比较。我们的结果证实,MP2 严重高估了大复合物的结合能,对于几个基准化合物,产生了超过 100%的相对误差。RPA 的相对误差始终在 5%到 10%之间,明显小于以前使用较小基组报告的结果,而自旋标度 MP2 方法表现出与 MP2 相似的局限性,尽管不太明显,并且经验上色散校正 DFA 的性能几乎与 RPA 一样好。回归分析表明,MP2 结合能的相对误差随着系统尺寸的增加而系统地增加,速率约为每价电子 0.1%,而 RPA 和色散校正 DFA 的相对误差几乎与系统尺寸无关。这些观察结果得到了有机分子计算旋转常数与气相光谱数据中 ROT34 基准的比较的证实。为了分析这些结果,开发了一种渐近绝热连接对称自适应微扰理论(AC-SAPT),它使用完全耦合的单体,其基态密度受到复合物基态密度的约束。利用涨落耗散定理,我们获得了一个非微扰的“屏蔽二阶”表达式,用于单体数量的色散能,对于非重叠子系统是精确的,并且没有感应项;Hartree、交换和相关核的一阶 RPA 类似物恢复了宏观的 Lifshitz 极限。相互作用能的 AC-SAPT 展开式是通过耦合强度积分项的泰勒展开得到的。在 RPA 和 MBPT 中推导出了 AC-SAPT 级数的收敛半径的显式表达式,并进行了数值评估。当使用 RPA 时,AC-SAPT 级数对于非简并单体总是收敛的,但对于二阶 MBPT,除了最小和最非极化的单体外,发现它会错误地发散。在 RPA 中,通过数值证实了 MBPT 的 AC-SAPT 级数的发散;重新审视了之前关于 MBPT 方法 SAPT 展开收敛性的数值结果,并在包含足够高阶时支持了这一结论。对于大系统的 NI,MBPT 方法失败的原因是由于不同单体之间的诱导粒子-空穴对,导致库仑相互作用的“电动力学”屏蔽缺失或不完整,使得有效相互作用对于 AC-SAPT 来说过于强大而无法收敛。因此,即使在具有数十个原子的中等极化分子中,MBPT 也不能用于定量预测 NI。未能准确地考虑到电动力学极化使得 MBPT 在应用于纳米结构、大分子和软物质等 NI 方面在定性上不合适;在可能的情况下,应使用更稳健的非微扰方法,如 RPA 或耦合簇方法。