Li Shanshan, Xiong Bing, Xu Yuan, Lu Tao, Luo Xiaomin, Luo Cheng, Shen Jingkang, Chen Kaixian, Zheng Mingyue, Jiang Hualiang
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China.
J Chem Theory Comput. 2014 Jun 10;10(6):2255-64. doi: 10.1021/ct5002279. Epub 2014 May 21.
The C-terminal domain of the bacterial transcription antiterminator RfaH undergoes a dramatic all-α-helix to all-β-barrel transition when released from its N-terminal domain. These two distinct folding patterns correspond to different functions: the all-α state acts as an essential regulator of transcription to ensure RNA polymerase binding, whereas the all-β state operates as an activator of translation by interacting with the ribosomal protein S10 and recruits ribosomal mRNA. Accordingly, this drastic conformational change enables RfaH to physically couple the transcription and translation processes in gene expression. To understand the mechanism behind this extraordinary functionally relevant structural transition, we constructed Markov state models using an adaptive seeding method. The constructed models highlight several parallel folding pathways with heterogeneous molecular mechanisms, which reveal the folding kinetics and atomic details of the conformational transition.
细菌转录抗终止因子RfaH的C末端结构域从其N末端结构域释放时,会经历从全α螺旋到全β桶的显著转变。这两种不同的折叠模式对应不同的功能:全α状态作为转录的重要调节因子,确保RNA聚合酶结合,而全β状态通过与核糖体蛋白S10相互作用作为翻译的激活剂,并招募核糖体mRNA。因此,这种剧烈的构象变化使RfaH能够在基因表达中物理性地连接转录和翻译过程。为了理解这种与功能高度相关的非凡结构转变背后的机制,我们使用自适应种子方法构建了马尔可夫状态模型。构建的模型突出了几条具有异质分子机制的平行折叠途径,揭示了构象转变的折叠动力学和原子细节。