Ramírez-Sarmiento César A, Noel Jeffrey K, Valenzuela Sandro L, Artsimovitch Irina
Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile.
Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America.
PLoS Comput Biol. 2015 Jul 31;11(7):e1004379. doi: 10.1371/journal.pcbi.1004379. eCollection 2015 Jul.
RfaH is a virulence factor from Escherichia coli whose C-terminal domain (CTD) undergoes a dramatic α-to-β conformational transformation. The CTD in its α-helical fold is stabilized by interactions with the N-terminal domain (NTD), masking an RNA polymerase binding site until a specific recruitment site is encountered. Domain dissociation is triggered upon binding to DNA, allowing the NTD to interact with RNA polymerase to facilitate transcription while the CTD refolds into the β-barrel conformation that interacts with the ribosome to activate translation. However, structural details of this transformation process in the context of the full protein remain to be elucidated. Here, we explore the mechanism of the α-to-β conformational transition of RfaH in the full-length protein using a dual-basin structure-based model. Our simulations capture several features described experimentally, such as the requirement of disruption of interdomain contacts to trigger the α-to-β transformation, confirms the roles of previously indicated residues E48 and R138, and suggests a new important role for F130, in the stability of the interdomain interaction. These native basins are connected through an intermediate state that builds up upon binding to the NTD and shares features from both folds, in agreement with previous in silico studies of the isolated CTD. We also examine the effect of RNA polymerase binding on the stabilization of the β fold. Our study shows that native-biased models are appropriate for interrogating the detailed mechanisms of structural rearrangements during the dramatic transformation process of RfaH.
RfaH是一种来自大肠杆菌的毒力因子,其C末端结构域(CTD)经历了从α螺旋到β折叠的显著构象转变。处于α螺旋折叠状态的CTD通过与N末端结构域(NTD)的相互作用而稳定,掩盖了一个RNA聚合酶结合位点,直到遇到特定的招募位点。与DNA结合后会触发结构域解离,使NTD与RNA聚合酶相互作用以促进转录,而CTD则重新折叠成β桶状构象,与核糖体相互作用以激活翻译。然而,在完整蛋白质背景下这种转变过程的结构细节仍有待阐明。在这里,我们使用基于双盆地结构的模型探索全长蛋白质中RfaH从α到β构象转变的机制。我们的模拟捕捉到了一些实验描述的特征,例如需要破坏结构域间的接触来触发α到β的转变,证实了先前指出的E48和R138残基的作用,并暗示了F130在结构域间相互作用稳定性方面的新重要作用。这些天然盆地通过一个中间状态相连,该中间状态在与NTD结合时形成,并兼具两种折叠的特征,这与之前对分离的CTD的计算机模拟研究一致。我们还研究了RNA聚合酶结合对β折叠稳定性的影响。我们的研究表明,基于天然偏好的模型适用于探究RfaH剧烈转变过程中结构重排的详细机制。