Suppr超能文献

结构域间相互作用在双漏斗态势下控制RfaH的天然态转换

Interdomain Contacts Control Native State Switching of RfaH on a Dual-Funneled Landscape.

作者信息

Ramírez-Sarmiento César A, Noel Jeffrey K, Valenzuela Sandro L, Artsimovitch Irina

机构信息

Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile.

Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America.

出版信息

PLoS Comput Biol. 2015 Jul 31;11(7):e1004379. doi: 10.1371/journal.pcbi.1004379. eCollection 2015 Jul.

Abstract

RfaH is a virulence factor from Escherichia coli whose C-terminal domain (CTD) undergoes a dramatic α-to-β conformational transformation. The CTD in its α-helical fold is stabilized by interactions with the N-terminal domain (NTD), masking an RNA polymerase binding site until a specific recruitment site is encountered. Domain dissociation is triggered upon binding to DNA, allowing the NTD to interact with RNA polymerase to facilitate transcription while the CTD refolds into the β-barrel conformation that interacts with the ribosome to activate translation. However, structural details of this transformation process in the context of the full protein remain to be elucidated. Here, we explore the mechanism of the α-to-β conformational transition of RfaH in the full-length protein using a dual-basin structure-based model. Our simulations capture several features described experimentally, such as the requirement of disruption of interdomain contacts to trigger the α-to-β transformation, confirms the roles of previously indicated residues E48 and R138, and suggests a new important role for F130, in the stability of the interdomain interaction. These native basins are connected through an intermediate state that builds up upon binding to the NTD and shares features from both folds, in agreement with previous in silico studies of the isolated CTD. We also examine the effect of RNA polymerase binding on the stabilization of the β fold. Our study shows that native-biased models are appropriate for interrogating the detailed mechanisms of structural rearrangements during the dramatic transformation process of RfaH.

摘要

RfaH是一种来自大肠杆菌的毒力因子,其C末端结构域(CTD)经历了从α螺旋到β折叠的显著构象转变。处于α螺旋折叠状态的CTD通过与N末端结构域(NTD)的相互作用而稳定,掩盖了一个RNA聚合酶结合位点,直到遇到特定的招募位点。与DNA结合后会触发结构域解离,使NTD与RNA聚合酶相互作用以促进转录,而CTD则重新折叠成β桶状构象,与核糖体相互作用以激活翻译。然而,在完整蛋白质背景下这种转变过程的结构细节仍有待阐明。在这里,我们使用基于双盆地结构的模型探索全长蛋白质中RfaH从α到β构象转变的机制。我们的模拟捕捉到了一些实验描述的特征,例如需要破坏结构域间的接触来触发α到β的转变,证实了先前指出的E48和R138残基的作用,并暗示了F130在结构域间相互作用稳定性方面的新重要作用。这些天然盆地通过一个中间状态相连,该中间状态在与NTD结合时形成,并兼具两种折叠的特征,这与之前对分离的CTD的计算机模拟研究一致。我们还研究了RNA聚合酶结合对β折叠稳定性的影响。我们的研究表明,基于天然偏好的模型适用于探究RfaH剧烈转变过程中结构重排的详细机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4023/4521827/ebbd0849f81f/pcbi.1004379.g001.jpg

相似文献

1
Interdomain Contacts Control Native State Switching of RfaH on a Dual-Funneled Landscape.
PLoS Comput Biol. 2015 Jul 31;11(7):e1004379. doi: 10.1371/journal.pcbi.1004379. eCollection 2015 Jul.
2
The N-terminal domain of RfaH plays an active role in protein fold-switching.
PLoS Comput Biol. 2021 Sep 3;17(9):e1008882. doi: 10.1371/journal.pcbi.1008882. eCollection 2021 Sep.
3
4
Interdomain contacts control folding of transcription factor RfaH.
Nucleic Acids Res. 2013 Dec;41(22):10077-85. doi: 10.1093/nar/gkt779. Epub 2013 Aug 29.
5
The Role of the Interdomain Interactions on RfaH Dynamics and Conformational Transformation.
J Phys Chem B. 2015 Oct 8;119(40):12750-9. doi: 10.1021/acs.jpcb.5b05681. Epub 2015 Sep 28.
6
Molecular dynamics study on folding and allostery in RfaH.
Proteins. 2015 Sep;83(9):1582-92. doi: 10.1002/prot.24839. Epub 2015 Jul 20.
7
Intrinsically disordered regions stabilize the helical form of the C-terminal domain of RfaH: A molecular dynamics study.
Bioorg Med Chem. 2016 Oct 15;24(20):4970-4977. doi: 10.1016/j.bmc.2016.08.012. Epub 2016 Aug 9.
9
Multifunnel Landscape of the Fold-Switching Protein RfaH-CTD.
J Phys Chem B. 2018 Feb 8;122(5):1600-1607. doi: 10.1021/acs.jpcb.7b11352. Epub 2018 Jan 24.
10
Structural fluctuations and mechanical stabilities of the metamorphic protein RfaH.
Proteins. 2021 Mar;89(3):289-300. doi: 10.1002/prot.26014. Epub 2020 Oct 10.

引用本文的文献

3
An integrative approach to protein sequence design through multiobjective optimization.
PLoS Comput Biol. 2024 Jul 11;20(7):e1011953. doi: 10.1371/journal.pcbi.1011953. eCollection 2024 Jul.
5
Concerted transformation of a hyper-paused transcription complex and its reinforcing protein.
Nat Commun. 2024 Apr 8;15(1):3040. doi: 10.1038/s41467-024-47368-4.
6
Metamorphic proteins and how to find them.
Curr Opin Struct Biol. 2024 Jun;86:102807. doi: 10.1016/j.sbi.2024.102807. Epub 2024 Mar 26.
7
An integrative approach to protein sequence design through multiobjective optimization.
bioRxiv. 2024 Mar 4:2024.03.01.582670. doi: 10.1101/2024.03.01.582670.
8
Local energetic frustration conservation in protein families and superfamilies.
Nat Commun. 2023 Dec 16;14(1):8379. doi: 10.1038/s41467-023-43801-2.
10
Exploring the structural acrobatics of fold-switching proteins using simplified structure-based models.
Biophys Rev. 2023 Jul 14;15(4):787-799. doi: 10.1007/s12551-023-01087-0. eCollection 2023 Aug.

本文引用的文献

1
Mechanism of the All-α to All-β Conformational Transition of RfaH-CTD: Molecular Dynamics Simulation and Markov State Model.
J Chem Theory Comput. 2014 Jun 10;10(6):2255-64. doi: 10.1021/ct5002279. Epub 2014 May 21.
3
Order and disorder control the functional rearrangement of influenza hemagglutinin.
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12049-54. doi: 10.1073/pnas.1412849111. Epub 2014 Jul 31.
4
5
Interdomain contacts control folding of transcription factor RfaH.
Nucleic Acids Res. 2013 Dec;41(22):10077-85. doi: 10.1093/nar/gkt779. Epub 2013 Aug 29.
6
An autoinhibited state in the structure of Thermotoga maritima NusG.
Structure. 2013 Mar 5;21(3):365-75. doi: 10.1016/j.str.2012.12.015. Epub 2013 Feb 14.
7
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.
8
The protein-folding problem, 50 years on.
Science. 2012 Nov 23;338(6110):1042-6. doi: 10.1126/science.1219021.
9
Transformation: the next level of regulation.
RNA Biol. 2012 Dec;9(12):1418-23. doi: 10.4161/rna.22724. Epub 2012 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验