Suppr超能文献

在复杂行为表型的连续定向选择下加性遗传方差 - 协方差矩阵的进化

Evolution of the additive genetic variance-covariance matrix under continuous directional selection on a complex behavioural phenotype.

作者信息

Careau Vincent, Wolak Matthew E, Carter Patrick A, Garland Theodore

机构信息

Canada Research Chair in Functional Ecology, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada

School of Biological Sciences, University of Aberdeen, Aberdeen, UK.

出版信息

Proc Biol Sci. 2015 Nov 22;282(1819). doi: 10.1098/rspb.2015.1119.

Abstract

Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance-covariance matrix ( G: ). Yet knowledge of G: in a population experiencing new or altered selection is not sufficient to predict selection response because G: itself evolves in ways that are poorly understood. We experimentally evaluated changes in G: when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G: induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G: induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G: and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change.

摘要

鉴于人为引起的环境变化的发生速度,一个紧迫的挑战是确定选择能够推动进化变化的速度。对多变量表型选择的适应性反应的一个关键决定因素是加性遗传方差 - 协方差矩阵(G: )。然而,对于经历新的或改变的选择的种群中的G: 的了解,并不足以预测选择反应,因为G: 本身以人们知之甚少的方式进化。我们通过实验评估了当密切相关的行为性状经历连续定向选择时G: 的变化。我们将遗传协方差张量方法应用于一个来自重复的31代人工选择实验的大型数据集(n = 17328个个体),该实验在6天测试的第5天和第6天对小鼠进行自愿轮转跑步的选育。对G: 的这个子集的选择在前四代中导致了整个矩阵中所有6天跑步行为的成比例变化。选择引起的G: 的变化导致对选择的反应速度比预测慢四倍。因此,选择加剧了G: 内的限制并限制了未来的适应性反应,这一现象可能对面临快速环境变化的种群产生深远影响。

相似文献

2
Limits to behavioral evolution: the quantitative genetics of a complex trait under directional selection.
Evolution. 2013 Nov;67(11):3102-19. doi: 10.1111/evo.12200. Epub 2013 Jul 23.
3
Phenotypic plasticity and experimental evolution.
J Exp Biol. 2006 Jun;209(Pt 12):2344-61. doi: 10.1242/jeb.02244.
4
Ontogenies in mice selected for high voluntary wheel-running activity. I. Mean ontogenies.
Evolution. 2003 Mar;57(3):646-57. doi: 10.1111/j.0014-3820.2003.tb01556.x.
5
Evolution of a small-muscle polymorphism in lines of house mice selected for high activity levels.
Evolution. 2002 Jun;56(6):1267-75. doi: 10.1111/j.0014-3820.2002.tb01437.x.
6
Does Behavior Evolve First? Correlated Responses to Selection for Voluntary Wheel-Running Behavior in House Mice.
Ecol Evol Physiol. 2024 Mar-Apr;97(2):97-117. doi: 10.1086/730153. Epub 2024 Apr 17.
7
The phenotypic and genetic covariance structure of drosphilid wings.
Evolution. 2007 Apr;61(4):902-11. doi: 10.1111/j.1558-5646.2007.00078.x.
8
Effects of voluntary activity and genetic selection on muscle metabolic capacities in house mice Mus domesticus.
J Appl Physiol (1985). 2000 Oct;89(4):1608-16. doi: 10.1152/jappl.2000.89.4.1608.
9
Evolution of Genetic Variance during Adaptive Radiation.
Am Nat. 2018 Apr;191(4):E108-E128. doi: 10.1086/696123. Epub 2018 Jan 31.
10
Evolution and stability of the G-matrix on a landscape with a moving optimum.
Evolution. 2004 Aug;58(8):1639-54. doi: 10.1111/j.0014-3820.2004.tb00450.x.

引用本文的文献

1
Can a Hybrid Line Break a Selection Limit on Behavioral Evolution in Mice?
Behav Genet. 2025 Jan;55(1):43-58. doi: 10.1007/s10519-024-10209-7. Epub 2024 Dec 5.
2
Evolution of Phenotypic Variance Provides Insights into the Genetic Basis of Adaptation.
Genome Biol Evol. 2024 Apr 2;16(4). doi: 10.1093/gbe/evae077.
4
Developmental bias in the evolution and plasticity of beetle horn shape.
Proc Biol Sci. 2022 Sep 28;289(1983):20221441. doi: 10.1098/rspb.2022.1441.
5
Experimental evolution of a pheromone signal.
Ecol Evol. 2022 May 24;12(5):e8941. doi: 10.1002/ece3.8941. eCollection 2022 May.
6
Introduced populations of ragweed show as much evolutionary potential as native populations.
Evol Appl. 2021 Apr 2;14(5):1436-1449. doi: 10.1111/eva.13211. eCollection 2021 May.
7
Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a Selection Experiment with House Mice.
Genetics. 2020 Nov;216(3):781-804. doi: 10.1534/genetics.120.303668. Epub 2020 Sep 25.
8
Floral signals evolve in a predictable way under artificial and pollinator selection in Brassica rapa.
BMC Evol Biol. 2020 Sep 24;20(1):127. doi: 10.1186/s12862-020-01692-7.
9
Environmentally triggered variability in the genetic variance-covariance of herbivory resistance of an exotic plant .
Ecol Evol. 2020 Mar 2;10(6):3103-3111. doi: 10.1002/ece3.6130. eCollection 2020 Mar.
10
Comparative analysis of the multivariate genetic architecture of morphological traits in three species of Gomphocerine grasshoppers.
Heredity (Edinb). 2020 Feb;124(2):367-382. doi: 10.1038/s41437-019-0276-1. Epub 2019 Oct 24.

本文引用的文献

1
PHENOTYPIC EVOLUTION, CONSTANT COVARIANCES, AND THE MAINTENANCE OF ADDITIVE VARIANCE.
Evolution. 1988 Nov;42(6):1342-1347. doi: 10.1111/j.1558-5646.1988.tb04193.x.
2
CHANGES IN GENETIC VARIANCES AND COVARIANCES: G WHIZ!
Evolution. 1995 Dec;49(6):1260-1267. doi: 10.1111/j.1558-5646.1995.tb04452.x.
3
QUANTITATIVE GENETIC ANALYSIS OF MULTIVARIATE EVOLUTION, APPLIED TO BRAIN:BODY SIZE ALLOMETRY.
Evolution. 1979 Mar;33(1Part2):402-416. doi: 10.1111/j.1558-5646.1979.tb04694.x.
5
Estimating uncertainty in multivariate responses to selection.
Evolution. 2014 Apr;68(4):1188-96. doi: 10.1111/evo.12321. Epub 2013 Dec 19.
6
Limits to behavioral evolution: the quantitative genetics of a complex trait under directional selection.
Evolution. 2013 Nov;67(11):3102-19. doi: 10.1111/evo.12200. Epub 2013 Jul 23.
7
Comparing G: multivariate analysis of genetic variation in multiple populations.
Heredity (Edinb). 2014 Jan;112(1):21-9. doi: 10.1038/hdy.2013.12. Epub 2013 Mar 13.
8
Performance, personality, and energetics: correlation, causation, and mechanism.
Physiol Biochem Zool. 2012 Nov-Dec;85(6):543-71. doi: 10.1086/666970. Epub 2012 Oct 1.
10
Climate change and evolutionary adaptation.
Nature. 2011 Feb 24;470(7335):479-85. doi: 10.1038/nature09670.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验