Suppr超能文献

在复杂行为表型的连续定向选择下加性遗传方差 - 协方差矩阵的进化

Evolution of the additive genetic variance-covariance matrix under continuous directional selection on a complex behavioural phenotype.

作者信息

Careau Vincent, Wolak Matthew E, Carter Patrick A, Garland Theodore

机构信息

Canada Research Chair in Functional Ecology, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada

School of Biological Sciences, University of Aberdeen, Aberdeen, UK.

出版信息

Proc Biol Sci. 2015 Nov 22;282(1819). doi: 10.1098/rspb.2015.1119.

Abstract

Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance-covariance matrix ( G: ). Yet knowledge of G: in a population experiencing new or altered selection is not sufficient to predict selection response because G: itself evolves in ways that are poorly understood. We experimentally evaluated changes in G: when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G: induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G: induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G: and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change.

摘要

鉴于人为引起的环境变化的发生速度,一个紧迫的挑战是确定选择能够推动进化变化的速度。对多变量表型选择的适应性反应的一个关键决定因素是加性遗传方差 - 协方差矩阵(G: )。然而,对于经历新的或改变的选择的种群中的G: 的了解,并不足以预测选择反应,因为G: 本身以人们知之甚少的方式进化。我们通过实验评估了当密切相关的行为性状经历连续定向选择时G: 的变化。我们将遗传协方差张量方法应用于一个来自重复的31代人工选择实验的大型数据集(n = 17328个个体),该实验在6天测试的第5天和第6天对小鼠进行自愿轮转跑步的选育。对G: 的这个子集的选择在前四代中导致了整个矩阵中所有6天跑步行为的成比例变化。选择引起的G: 的变化导致对选择的反应速度比预测慢四倍。因此,选择加剧了G: 内的限制并限制了未来的适应性反应,这一现象可能对面临快速环境变化的种群产生深远影响。

相似文献

3
Phenotypic plasticity and experimental evolution.表型可塑性与实验进化
J Exp Biol. 2006 Jun;209(Pt 12):2344-61. doi: 10.1242/jeb.02244.
9
Evolution of Genetic Variance during Adaptive Radiation.适应性辐射过程中遗传变异的演变。
Am Nat. 2018 Apr;191(4):E108-E128. doi: 10.1086/696123. Epub 2018 Jan 31.

引用本文的文献

5
Experimental evolution of a pheromone signal.一种信息素信号的实验性进化
Ecol Evol. 2022 May 24;12(5):e8941. doi: 10.1002/ece3.8941. eCollection 2022 May.

本文引用的文献

2
CHANGES IN GENETIC VARIANCES AND COVARIANCES: G WHIZ!遗传方差和协方差的变化:天哪!
Evolution. 1995 Dec;49(6):1260-1267. doi: 10.1111/j.1558-5646.1995.tb04452.x.
5
Estimating uncertainty in multivariate responses to selection.估计多变量选择响应中的不确定性。
Evolution. 2014 Apr;68(4):1188-96. doi: 10.1111/evo.12321. Epub 2013 Dec 19.
10
Climate change and evolutionary adaptation.气候变化与进化适应。
Nature. 2011 Feb 24;470(7335):479-85. doi: 10.1038/nature09670.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验