Suppr超能文献

关于电荷转移分子激发的度量:一种简单的化学描述符。

On the Metric of Charge Transfer Molecular Excitations: A Simple Chemical Descriptor.

作者信息

Guido Ciro A, Cortona Pietro, Mennucci Benedetta, Adamo Carlo

机构信息

Laboratoire Structures, Propriétés et Modélisation des Solides (SPMS), CNRS UMR 8580, École Centrale Paris , Grande Voie des Vignes, F-92295 Châtenay-Malabry, France.

Department of Chemistry, University of Pisa , Via Risorgimento 35, 56126 Pisa, Italy.

出版信息

J Chem Theory Comput. 2013 Jul 9;9(7):3118-26. doi: 10.1021/ct400337e. Epub 2013 Jun 18.

Abstract

A new index is defined with the aim of further exploring the metric of excited electronic states in the framework of the time-dependent density functional theory. This descriptor, called Δr, is based on the charge centroids of the orbitals involved in the excitations and can be interpreted in term of the hole-electron distance. The tests carried out on a set of molecules characterized by a significant number of charge-transfer excitations well illustrate its ability in discriminating between short (Δr ≤ 1.5 Å) and long-range (Δr ≥ 2.0 Å) excitations. On the basis of the well-known pitfalls of TD-DFT, its values can be then associated to the functional performances in reproducing different type of transitions and allow for the definition of a "trust radius" for GGA and hybrid functionals. The study of other systems, including some well-known difficult cases for other metric descriptors, gives further evidence of the high discrimination power of the proposed index. The combined use with other density or orbital-based descriptors is finally suggested to have a reliable diagnostic test of TD-DFT transitions.

摘要

定义了一个新的指标,旨在进一步探索含时密度泛函理论框架下激发电子态的度量。这个描述符称为Δr,它基于激发所涉及轨道的电荷中心,并且可以根据空穴 - 电子距离来解释。对一组以大量电荷转移激发为特征的分子进行的测试很好地说明了它区分短程(Δr≤1.5 Å)和长程(Δr≥2.0 Å)激发的能力。基于TD - DFT众所周知的缺陷,其值随后可以与再现不同类型跃迁时的泛函性能相关联,并允许为GGA和杂化泛函定义一个“信任半径”。对其他体系的研究,包括一些对其他度量描述符来说众所周知的困难情况,进一步证明了所提出指标的高区分能力。最后建议将其与其他基于密度或轨道的描述符结合使用,以对TD - DFT跃迁进行可靠的诊断测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验