Suppr超能文献

用于表征电子激发的最优传输距离

Optimal Transport Distances to Characterize Electronic Excitations.

作者信息

Lieberherr Annina Z, Gori-Giorgi Paola, Giesbertz Klaas J H

机构信息

Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.

Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.

出版信息

J Chem Theory Comput. 2024 Jul 9;20(13):5635-5642. doi: 10.1021/acs.jctc.4c00289. Epub 2024 Jun 14.

Abstract

Understanding the character of electronic excitations is important in computational and reaction mechanistic studies, but their classification from simulations remains an open problem. Distances based on optimal transport have proven very useful in a plethora of classification problems and, therefore, seem a natural tool to try to tackle this challenge. We propose and investigate a new diagnostic Θ based on the Sinkhorn divergence from optimal transport. We evaluate a -NN classification algorithm on Θ, the popular Λ diagnostic, and their combination, and assess their performance in labeling excitations, finding that (i) the combination only slightly improves the classification, (ii) Rydberg excitations are not separated well in any setting, and (iii) Θ breaks down for charge transfer in small molecules. We then define a length-scale-normalized version of Θ and show that the result correlates closely with Λ for results obtained with Gaussian basis functions. Finally, we discuss the orbital dependence of our approach and explore an orbital-independent version. Using an optimized combination of the optimal transport and overlap diagnostics together with a different metric is in our opinion the most promising for future classification studies.

摘要

了解电子激发的特性在计算和反应机理研究中很重要,但从模拟中对其进行分类仍然是一个悬而未决的问题。基于最优传输的距离已被证明在大量分类问题中非常有用,因此似乎是尝试应对这一挑战的自然工具。我们提出并研究了一种基于最优传输的Sinkhorn散度的新诊断方法Θ。我们在Θ、流行的Λ诊断方法及其组合上评估了一种 -NN分类算法,并评估了它们在标记激发方面的性能,发现:(i) 组合仅略微提高了分类效果;(ii) 在任何情况下里德堡激发都没有被很好地分离;(iii) Θ对于小分子中的电荷转移失效。然后我们定义了Θ的长度尺度归一化版本,并表明对于用高斯基函数获得的结果,该结果与Λ密切相关。最后,我们讨论了我们方法的轨道依赖性,并探索了一种与轨道无关的版本。我们认为,将最优传输和重叠诊断方法与不同度量进行优化组合,对未来的分类研究最有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f7/11238536/066284227ab2/ct4c00289_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验