Chibani Siwar, Laurent Adèle D, Le Guennic Boris, Jacquemin Denis
Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes , 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS-Université de Rennes 1 , 263 Av. du General Leclerc, 35042 Rennes Cedex, France.
J Chem Theory Comput. 2014 Oct 14;10(10):4574-82. doi: 10.1021/ct500655k.
BODIPY and aza-BODIPY dyes constitute two key families of organic dyes with applications in both materials science and biology. Previous attempts aiming to obtain accurate theoretical estimates of their optical properties, and in particular of their 0-0 energies, have failed. Here, using time-dependent density functional theory (TD-DFT), configuration interaction singles with a double correction [CIS(D)], and its scaled-opposite-spin variant [SOS-CIS(D)], we have determined the 0-0 energies as well as the vibronic shapes of both the absorption and emission bands of a large set of fluoroborates. Indeed, we have selected 47 BODIPY and 4 aza-BODIPY dyes presenting diverse chemical structures. TD-DFT yields a rather large mean signed error between the experimental and theoretical 0-0 energies with a systematic overshooting of the transition energies (by ca. 0.4 eV). This error is reduced to ca. 0.2 [0.1] eV when the TD-DFT 0-0 energies are corrected with vertical CIS(D) [SOS-CIS(D)] energies. For BODIPY and aza-BODIPY dyes, both CIS(D) and SOS-CIS(D) clearly outperform TD-DFT. The present computational protocol allows accurate data to be obtained for the most relevant properties, that is, 0-0 energies and optical band shapes.
硼二吡咯(BODIPY)和氮杂硼二吡咯(aza - BODIPY)染料是有机染料的两个关键家族,在材料科学和生物学领域均有应用。此前旨在对其光学性质,尤其是0 - 0能量进行准确理论估算的尝试均告失败。在此,我们使用含时密度泛函理论(TD - DFT)、带双校正的单激发组态相互作用方法[CIS(D)]及其反自旋标度变体[SOS - CIS(D)],确定了一大组氟硼酸盐的吸收和发射带的0 - 0能量以及振子强度分布。实际上,我们选取了47种具有不同化学结构的硼二吡咯和4种氮杂硼二吡咯染料。TD - DFT在实验和理论0 - 0能量之间产生了相当大的平均符号误差,跃迁能量存在系统性的高估(约0.4 eV)。当用垂直CIS(D)[SOS - CIS(D)]能量校正TD - DFT的0 - 0能量时,该误差减小至约0.2[0.1]eV。对于硼二吡咯和氮杂硼二吡咯染料,CIS(D)和SOS - CIS(D)均明显优于TD - DFT。当前的计算方法能够获得关于最相关性质,即0 - 0能量和光学能带形状的准确数据。