Rudolph Tanja K, Ravekes Thorben, Klinke Anna, Friedrichs Kai, Mollenhauer Martin, Pekarova Michaela, Ambrozova Gabriela, Martiskova Hana, Kaur Jatinder-Jit, Matthes Bianca, Schwoerer Alex, Woodcock Steven R, Kubala Lukas, Freeman Bruce A, Baldus Stephan, Rudolph Volker
Department of Cardiology, University Heart Center Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
Department of Cardiology, University Heart Center Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany International Clinical Research Center-Center of Biomolecular and Cellular Engineering, St Anne's University Hospital Brno, Brno, Czech Republic.
Cardiovasc Res. 2016 Jan 1;109(1):174-84. doi: 10.1093/cvr/cvv254. Epub 2015 Nov 23.
Atrial fibrosis, one of the most striking features in the pathology of atrial fibrillation (AF), is promoted by local and systemic inflammation. Electrophilic fatty acid nitroalkenes, endogenously generated by both metabolic and inflammatory reactions, are anti-inflammatory mediators that in synthetic form may be useful as drug candidates. Herein we investigate whether an exemplary nitro-fatty acid can limit atrial fibrosis and AF.
Wild-type C57BL6/J mice were treated for 2 weeks with angiotensin II (AngII) and vehicle or nitro-oleic acid (10-nitro-octadec-9-enoic acid, OA-NO2, 6 mg/kg body weight) via subcutaneous osmotic minipumps. OA-NO2 significantly inhibited atrial fibrosis and depressed vulnerability for AF during right atrial electrophysiological stimulation to levels observed for AngII-naive animals. Left atrial epicardial mapping studies demonstrated preservation of conduction homogeneity by OA-NO2. The protection from fibrotic remodelling was mediated by suppression of Smad2-dependent myofibroblast transdifferentiation and inhibition of Nox2-dependent atrial superoxide formation.
OA-NO2 potently inhibits atrial fibrosis and subsequent AF. Nitro-fatty acids and possibly other lipid electrophiles thus emerge as potential therapeutic agents for AF, either by increasing endogenous levels through dietary modulation or by administration as synthetic drugs.
心房纤维化是心房颤动(AF)病理学中最显著的特征之一,由局部和全身炎症促进。代谢和炎症反应内源性产生的亲电子脂肪酸硝基烯烃是抗炎介质,其合成形式可能作为候选药物有用。在此,我们研究一种示例性硝基脂肪酸是否能限制心房纤维化和房颤。
野生型C57BL6/J小鼠通过皮下渗透微型泵接受2周的血管紧张素II(AngII)和载体或硝基油酸(10-硝基-9-十八烯酸,OA-NO2,6mg/kg体重)治疗。OA-NO2显著抑制心房纤维化,并在右心房电生理刺激期间将房颤易感性降低至未接受AngII处理动物所观察到的水平。左心房心外膜标测研究表明OA-NO2可维持传导均匀性。对纤维化重塑的保护作用是通过抑制Smad2依赖性成肌纤维细胞转分化和抑制Nox2依赖性心房超氧化物形成介导的。
OA-NO2有效抑制心房纤维化及随后的房颤。因此,硝基脂肪酸以及可能的其他脂质亲电试剂作为房颤的潜在治疗药物出现,要么通过饮食调节提高内源性水平,要么作为合成药物给药。