Randel Nadine, Jékely Gáspár
Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
Philos Trans R Soc Lond B Biol Sci. 2016 Jan 5;371(1685):20150042. doi: 10.1098/rstb.2015.0042.
Vision allows animals to detect spatial differences in environmental light levels. High-resolution image-forming eyes evolved from low-resolution eyes via increases in photoreceptor cell number, improvements in optics and changes in the neural circuits that process spatially resolved photoreceptor input. However, the evolutionary origins of the first low-resolution visual systems have been unclear. We propose that the lowest resolving (two-pixel) visual systems could initially have functioned in visual phototaxis. During visual phototaxis, such elementary visual systems compare light on either side of the body to regulate phototactic turns. Another, even simpler and non-visual strategy is characteristic of helical phototaxis, mediated by sensory-motor eyespots. The recent mapping of the complete neural circuitry (connectome) of an elementary visual system in the larva of the annelid Platynereis dumerilii sheds new light on the possible paths from non-visual to visual phototaxis and to image-forming vision. We outline an evolutionary scenario focusing on the neuronal circuitry to account for these transitions. We also present a comprehensive review of the structure of phototactic eyes in invertebrate larvae and assign them to the non-visual and visual categories. We propose that non-visual systems may have preceded visual phototactic systems in evolution that in turn may have repeatedly served as intermediates during the evolution of image-forming eyes.
视觉使动物能够检测环境光水平的空间差异。高分辨率成像眼睛是从低分辨率眼睛进化而来的,其方式包括增加光感受器细胞数量、改善光学性能以及改变处理空间分辨光感受器输入的神经回路。然而,最初的低分辨率视觉系统的进化起源尚不清楚。我们提出,最低分辨率(两像素)的视觉系统最初可能在视觉趋光性中发挥作用。在视觉趋光性过程中,这种基本的视觉系统比较身体两侧的光线,以调节趋光转向。另一种甚至更简单且非视觉的策略是螺旋趋光性的特征,由感觉运动眼点介导。最近对环节动物杜氏阔沙蚕幼虫基本视觉系统的完整神经回路(连接组)的绘制,为从非视觉趋光性到视觉趋光性以及成像视觉的可能路径提供了新的线索。我们概述了一种关注神经回路的进化情景,以解释这些转变。我们还对无脊椎动物幼虫趋光眼的结构进行了全面综述,并将它们分为非视觉和视觉类别。我们提出,在进化过程中,非视觉系统可能先于视觉趋光系统出现,而视觉趋光系统反过来可能在成像眼睛的进化过程中多次充当中间环节。