Departments of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
PLoS One. 2024 Nov 12;19(11):e0313407. doi: 10.1371/journal.pone.0313407. eCollection 2024.
Optic photoreception is a critical function for animal survival. Across the evolutionary spectrum, diverse animal models have been used to investigate visual system function and potential mechanisms under physiological or pathophysiological states. However less is known on photoreceptive behaviors and retinal processing in invertebrates, especially molluscs. This study focuses on the freshwater pond snail, Lymnaea stagnalis (L. stagnalis), to explore its visual function and underlying mechanisms. Using anatomical and histological approaches we characterized the L. stagnalis eye structure and demonstrated structural connections and retinal rhodopsin-positive sensory cells potentially critical for phototransduction. To assess the snail phototactic responses, we developed a new neurobehavioral protocol and employed DeepLabCut to track and quantify animal locomotion. We demonstrated that L. stagnalis exhibits a positive locomotory response to intense focal light and has diverse photo-locomotory responses. Further, we conducted phylogenetic and protein structure analyses and demonstrated that L. stagnalis has a unique repertoire of both vertebrate and invertebrate phototransduction genes. Further characterization of a rhodopsin-like gene identified unique characteristics compared to other mollusks and vertebrates, suggesting different mechanisms of phototransduction. Taken together, our work establishes L. stagnalis as a model organism for studying optic photoreception, offering new insights into the evolution and diversity of visual function across animal species.
视觉感光对于动物的生存至关重要。在进化的过程中,不同的动物模型被用于研究生理或病理状态下的视觉系统功能和潜在机制。然而,对于无脊椎动物,特别是软体动物的感光行为和视网膜处理,我们知之甚少。本研究以淡水池塘蜗牛(Lymnaea stagnalis)为研究对象,探索其视觉功能和潜在机制。通过解剖学和组织学方法,我们描述了 L. stagnalis 眼睛的结构,并证明了结构连接和视网膜视蛋白阳性感觉细胞对于光转导可能具有重要作用。为了评估蜗牛的趋光反应,我们开发了一种新的神经行为协议,并采用 DeepLabCut 来跟踪和量化动物的运动。我们证明,L. stagnalis 对强烈的点状光表现出正向的运动反应,并且具有多种光运动反应。此外,我们进行了系统发育和蛋白质结构分析,并证明 L. stagnalis 具有独特的脊椎动物和无脊椎动物光转导基因库。对一种类似视蛋白的基因的进一步特征分析表明,与其他软体动物和脊椎动物相比,它具有独特的特征,这表明光转导可能具有不同的机制。总之,我们的工作确立了 L. stagnalis 作为研究视觉感光的模式生物,为研究动物物种间视觉功能的进化和多样性提供了新的见解。